Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 172(4): 1941-1949, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33749003

RESUMEN

There is increasing interest in understanding how trait networks can be manipulated to improve the performance of crop species. Working towards this goal, we have identified key traits linking the acquisition of water, the transport of water to the sites of evaporation and photosynthesis, stomatal conductance, and growth across eight maize hybrid lines grown under well-watered and water-limiting conditions in Northern Colorado. Under well-watered conditions, hybrids with higher end-of-season growth and grain yield exhibited higher leaf-specific conductance, lower operating water potentials, higher rates of midday stomatal conductance, higher rates of net CO2 assimilation, and greater leaf osmotic adjustment. This trait network was similar under water-limited conditions with the notable exception that linkages between water transport, midday stomatal conductance, and growth were even stronger than under fully watered conditions. The maintenance of high leaf-specific conductance throughout the day was achieved via higher maximal conductance rates rather than lower susceptibility to conductance loss. Our results suggest that efforts to improve maize performance in well-watered and water-limiting conditions would benefit from considering the physiological trait networks governing water and carbon flux rather than focusing on single traits independently of one another.


Asunto(s)
Transpiración de Plantas , Zea mays , Sequías , Fotosíntesis , Hojas de la Planta , Estomas de Plantas , Agua
2.
PLoS Pathog ; 14(10): e1007356, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30332488

RESUMEN

Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.


Asunto(s)
Resistencia a la Enfermedad , Helminthosporium/fisiología , Oxidorreductasas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Virulencia , Zea mays/microbiología , Oxidorreductasas/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
3.
Nature ; 542(7639): 105-109, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28114299

RESUMEN

Sexual reproduction in flowering plants involves double fertilization, the union of two sperm from pollen with two sex cells in the female embryo sac. Modern plant breeders increasingly seek to circumvent this process to produce doubled haploid individuals, which derive from the chromosome-doubled cells of the haploid gametophyte. Doubled haploid production fixes recombinant haploid genomes in inbred lines, shaving years off the breeding process. Costly, genotype-dependent tissue culture methods are used in many crops, while seed-based in vivo doubled haploid systems are rare in nature and difficult to manage in breeding programmes. The multi-billion-dollar maize hybrid seed business, however, is supported by industrial doubled haploid pipelines using intraspecific crosses to in vivo haploid inducer males derived from Stock 6, first reported in 1959 (ref. 5), followed by colchicine treatment. Despite decades of use, the mode of action remains controversial. Here we establish, through fine mapping, genome sequencing, genetic complementation, and gene editing, that haploid induction in maize (Zea mays) is triggered by a frame-shift mutation in MATRILINEAL (MTL), a pollen-specific phospholipase, and that novel edits in MTL lead to a 6.7% haploid induction rate (the percentage of haploid progeny versus total progeny). Wild-type MTL protein localizes exclusively to sperm cytoplasm, and pollen RNA-sequence profiling identifies a suite of pollen-specific genes overexpressed during haploid induction, some of which may mediate the formation of haploid seed. These findings highlight the importance of male gamete cytoplasmic components to reproductive success and male genome transmittance. Given the conservation of MTL in the cereals, this discovery may enable development of in vivo haploid induction systems to accelerate breeding in crop plants.


Asunto(s)
Mutación del Sistema de Lectura , Haploidia , Fosfolipasas/genética , Fosfolipasas/metabolismo , Polen/enzimología , Zea mays/enzimología , Zea mays/genética , Alelos , Cruzamiento/métodos , Citoplasma/enzimología , Fertilización , Edición Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Fenotipo , Proteínas de Plantas/metabolismo , Polen/citología , Polen/genética , Semillas/genética , Análisis de Secuencia de ARN , Zea mays/citología
4.
J Integr Plant Biol ; 58(6): 600-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26356550

RESUMEN

Jasmonates (JAs) are rapidly induced after wounding and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pigments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predominantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Muerte Celular/fisiología , Ciclopentanos/metabolismo , Proteínas de la Membrana/metabolismo , Mutación/genética , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Muerte Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de la Membrana/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
Genetics ; 193(2): 609-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222653

RESUMEN

Rp1-D21 is a maize auto-active resistance gene conferring a spontaneous hypersensitive response (HR) of variable severity depending on genetic background. We report an association mapping strategy based on the Mutant Assisted Gene Identification and Characterization approach to identify naturally occurring allelic variants associated with phenotypic variation in HR. Each member of a collection of 231 diverse inbred lines of maize constituting a high-resolution association mapping panel were crossed to a parental stock heterozygous for Rp1-D21, and the segregating F(1) generation testcrosses were evaluated for phenotypes associated with lesion severity for 2 years at two locations. A genome-wide scan for associations with HR was conducted with 47,445 SNPs using a linear mixed model that controlled for spurious associations due to population structure. Since the ability to identify candidate genes and the resolution of association mapping are highly influenced by linkage disequilibrium (LD), we examined the extent of genome-wide LD. On average, marker pairs separated by >10 kbp had an r(2) value of <0.1. Genomic regions surrounding SNPs significantly associated with HR traits were locally saturated with additional SNP markers to establish local LD structure and precisely identify candidate genes. Six significantly associated SNPs at five loci were detected. At each locus, the associated SNP was located within or immediately adjacent to candidate causative genes predicted to play significant roles in the control of programmed cell death and especially in ubiquitin pathway-related processes.


Asunto(s)
Apoptosis/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Zea mays/genética , Alelos , Cruzamientos Genéticos , Marcadores Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Zea mays/fisiología
6.
Theor Appl Genet ; 123(6): 985-97, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21792633

RESUMEN

The partially dominant, autoactive maize disease resistance gene Rp1-D21 causes hypersensitive response (HR) lesions to form spontaneously on leaves and stems in the absence of pathogen recognition. The maize nested association mapping (NAM) population consists of 25 200-line subpopulations each derived from a cross between the maize line B73 and one of 25 diverse inbred lines. By crossing a line carrying the Rp1-D21 gene with lines from three of these subpopulations and assessing the F(1) progeny, we were able to map several novel loci that modify the maize HR, using both single-population quantitative trait locus (QTL) and joint analysis of all three populations. Joint analysis detected QTL in greater number and with greater confidence and precision than did single population analysis. In particular, QTL were detected in bins 1.02, 4.04, 9.03, and 10.03. We have previously termed this technique, in which a mutant phenotype is used as a "reporter" for a trait of interest, Mutant-Assisted Gene Identification and Characterization (MAGIC).


Asunto(s)
Proteínas Portadoras/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Estudios de Asociación Genética , Variación Genética , Péptidos y Proteínas de Señalización Intracelular , Mutación , Fenotipo
7.
Genetics ; 184(3): 813-25, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20176981

RESUMEN

Potentially useful naturally occurring genetic variation is often difficult to identify as the effects of individual genes are subtle and difficult to observe. In this study, a novel genetic technique called Mutant-Assisted Gene Identification and Characterization is used to identify naturally occurring loci modulating the hypersensitive defense response (HR) in maize. Mutant-Assisted Gene Identification and Characterization facilitates the identification of naturally occurring alleles underlying phenotypic variation from diverse germplasm, using a mutant phenotype as a "reporter." In this study the reporter phenotype was caused by a partially dominant autoactive disease resistance gene, Rp1-D21, which caused HR lesions to form spontaneously all over the plant. Here it is demonstrated that the Rp1-D21 phenotype is profoundly affected by genetic background. By crossing the Rp1-D21 gene into the IBM mapping population, it was possible to map and identify Hrml1 on chromosome 10, a locus responsible for modulating the HR phenotype conferred by Rp1-D21. Other loci with smaller effects were identified on chromosomes 1 and 9. These results demonstrate that Mutant-Assisted Gene Identification and Characterization is a viable approach for identifying naturally occurring useful genetic variation.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas/fisiología , Sitios Genéticos/fisiología , Enfermedades de las Plantas/genética , Zea mays/genética , Fenotipo
8.
Plant Cell ; 21(8): 2527-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19717619

RESUMEN

Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/fisiología , Transferasas Intramoleculares/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Inmunidad Innata/genética , Immunoblotting , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Regiones Promotoras Genéticas , Pseudomonas syringae/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 105(5): 1762-7, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18230731

RESUMEN

The maize Hm1 gene provides protection against a lethal leaf blight and ear mold disease caused by Cochliobolus carbonum race 1 (CCR1). Although it was the first disease-resistance (DR) gene to be cloned, it remains a novelty because, instead of participating in the plant recognition and response system as most DR genes do, Hm1 disarms the pathogen directly. It does so by encoding an NADPH-dependent reductase, whose function is to inactivate Helminthosporium carbonum (HC) toxin, an epoxide-containing cyclic tetrapeptide, which the pathogen produces as a key virulence factor to colonize maize. Although CCR1 is strictly a pathogen of maize, orthologs of Hm1 and the HC-toxin reductase activity are present in the grass family, suggesting an ancient and evolutionarily conserved role of this DR trait in plants. Here, we provide proof for such a role by demonstrating its involvement in nonhost resistance of barley to CCR1. Barley leaves in which expression of the Hm1 homologue was silenced became susceptible to infection by CCR1, but only if the pathogen was able to produce HC toxin. Phylogenetic analysis indicated that Hm1 evolved exclusively and early in the grass lineage. Given the devastating ability of CCR1 to kill maize, these findings imply that the evolution and/or geographical distribution of grasses may have been constrained if Hm1 did not emerge.


Asunto(s)
Ascomicetos , Hordeum/genética , Oxidorreductasas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Zea mays/genética , Secuencia de Aminoácidos , Secuencia de Bases , Evolución Molecular , Expresión Génica , Genes de Plantas , Hordeum/enzimología , Hordeum/microbiología , Datos de Secuencia Molecular , Oxidorreductasas/clasificación , Filogenia , Proteínas de Plantas/clasificación , Poaceae/enzimología , Poaceae/genética , Poaceae/microbiología , Zea mays/enzimología , Zea mays/microbiología
10.
Mol Plant Microbe Interact ; 21(1): 79-86, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18052885

RESUMEN

The maize Hm2 gene provides protection against the leaf spot and ear mold disease caused by Cochliobolus carbonum race 1 (CCR1). In this regard, it is similar to Hm1, the better-known disease resistance gene of the maize-CCR1 pathosystem. However, in contrast to Hm1, which provides completely dominant resistance at all stages of plant development, Hm2-conferred resistance is only partially dominant and becomes fully effective only at maturity. To investigate why Hm2 behaves in this manner, we cloned it on the basis of its homology to Hm1. As expected, Hm2 is a duplicate of Hm1, although the protein it encodes is grossly truncated compared with HM1. The efficacy of Hm2 in conferring resistance improves gradually over time, changing from having little or no impact in seedling tissues to providing complete immunity at anthesis. The developmentally specified phenotype of Hm2 is not dictated transcriptionally, because the expression level of the gene, whether occurring constitutively or undergoing substantial and transient induction in response to infection, does not change with plant age. In contrast, however, the Hm2 transcript is much more abundant in plants homozygous for this gene compared with plants that contain only one copy of the gene, suggesting a transcriptional basis for the dosage-dependent nature of Hm2. Thus, different mechanisms seem to underlie the developmentally programmed versus the partially dominant resistance phenotype of Hm2.


Asunto(s)
Genes de Plantas , Inmunidad Innata/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Zea mays/crecimiento & desarrollo , Zea mays/genética , Alelos , Secuencia de Aminoácidos , Clonación Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transcripción Genética , Zea mays/inmunología
11.
Proc Natl Acad Sci U S A ; 103(50): 19200-5, 2006 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-17148606

RESUMEN

Pathogenic bacterial effectors suppress pathogen-associated molecular pattern (PAMP)-triggered host immunity, thereby promoting parasitism. In the presence of cognate resistance genes, it is proposed that plants detect the virulence activity of bacterial effectors and trigger a defense response, referred to here as effector-triggered immunity (ETI). However, the link between effector virulence and ETI at the molecular level is unknown. Here, we show that the Pseudomonas syringae effector AvrB suppresses PAMP-triggered immunity (PTI) through RAR1, a co-chaperone of HSP90 required for ETI. AvrB expressed in plants lacking the cognate resistance gene RPM1 suppresses cell wall defense induced by the flagellar peptide flg22, a well known PAMP, and promotes the growth of nonpathogenic bacteria in a RAR1-dependent manner. rar1 mutants display enhanced cell wall defense in response to flg22, indicating that RAR1 negatively regulates PTI. Furthermore, coimmunoprecipitation experiments indicated that RAR1 and AvrB interact in the plant. The results demonstrate that RAR1 molecularly links PTI, effector virulence, and ETI. The study supports that both pathogen virulence and plant disease resistance have evolved around PTI.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Biomarcadores , Proteínas Portadoras/genética , Color , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Unión Proteica , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad
12.
Plant J ; 37(4): 589-602, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14756769

RESUMEN

Gram-negative bacteria use a variety of virulence factors including phytotoxins, exopolysaccharides, effectors secreted by the type III secretion system, and cell-wall-degrading enzymes to promote parasitism in plants. However, little is known about how these virulence factors alter plant cellular responses to promote disease. In this study, we show that virulent Pseudomonas syringae strains activate the transcription of an Arabidopsis ethylene response factor (ERF) gene, RAP2.6, in a coronatine insensitive 1 (COI1)-dependent manner. A highly sensitive RAP2.6 promoter-firefly luciferase (RAP2.6-LUC) reporter line was developed to monitor activities of various bacterial virulence genes. Analyses of P. syringae pv. tomato DC3000 mutants indicated that both type III secretion system and the phytotoxin coronatine are required for RAP2.6 induction. We show that at least five individual type III effectors, avirulence B (AvrB), AvrRpt2, AvrPphB, HopPtoK, and AvrPphEPto, contributed to RAP2.6 induction. Gene-for-gene recognition was not involved in RAP2.6 induction because plants lacking RPM1 and RPS2 responded normally to AvrB and AvrRpt2 in RAP2.6 expression. Interestingly, the role of coronatine in RAP2.6 induction can be partially substituted by the addition of avrB in DC3000, suggesting that AvrB may mimic coronatine. These results suggest that P. syringae type III effectors and coronatine act by augmenting a COI1-dependent pathway to promote parasitism.


Asunto(s)
Aminoácidos/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/fisiología , Pseudomonas syringae/genética , Aminoácidos/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Etilenos/farmacología , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Indenos , Mutación , Oxilipinas , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/patogenicidad , Ácido Salicílico/farmacología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...