Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Eng Part C Methods ; 28(7): 363-374, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35615881

RESUMEN

Regenerating large bone defects requires a multifaceted approach combining optimal scaffold designs with appropriate growth factor delivery. Supraphysiological doses of recombinant human bone morphogenetic protein 2 (rhBMP2), typically used for the regeneration of large bone defects clinically in conjunction with an acellular collagen sponge (ACS), have resulted in many complications. In this study, we develop a hydroxyapatite/collagen I (HA/Col) scaffold to improve the mechanical properties of the HA scaffolds, while maintaining open connected porosity. Varying rhBMP2 dosages were then delivered from a collagenous periosteal membrane and paired with HA or HA/Col scaffolds to treat critical-sized (15 mm) diaphyseal radial defect in New Zealand white rabbits. The groups examined were ACS +76 µg rhBMP2 (clinically used INFUSE dosage), HA +76 µg rhBMP2, HA +15 µg rhBMP2, HA/Col +15 µg rhBMP2, and HA/Col +15 µg rhBMP2 + bone marrow-derived stromal cells (bMSCs). After 8 weeks of implantation, all regenerated bones were evaluated using microcomputed tomography, histology, histomorphometry, and torsional testing. It was observed that the bone volume regenerated in the HA/Col +15 µg rhBMP2 group was significantly higher than that in the groups with 76 µg rhBMP2. The same scaffold and growth factor combination resulted in the highest bone mineral density of the regenerated bone, and the most bone apposition on the scaffold surface. Both the HA and HA/Col scaffolds paired with 15 µg rhBMP2 had sustained ingrowth of the mineralization front after 2 weeks compared to the groups with 76 µg rhBMP2, which had far greater mineralization in the first 2 weeks after implantation. Complete bridging of the defect site and no significant difference in torsional strength, stiffness, or angle at failure were observed across all groups. No benefit of additional bMSC seeding was observed on any of the quantified metrics, while bone-implant apposition was reduced in the cell-seeded group. This study demonstrated that the controlled spatial delivery of rhBMP2 at the periosteum at significantly lower doses can be used as a strategy to improve bone regeneration around space maintaining scaffolds. Tweet Inside-out or outside-in: growth factors delivered from the outside of porous mineral-collagen scaffolds, maintain strength and regrow bone better in a rabbit study. Twitter handle for senior author (@Guda_Lab) and sponsoring institution (@UTSA) Impact Statement This study provides insights on bone regeneration in the presence of spatially controlled delivery of recombinant human bone morphogenetic protein 2 (rhBMP2) from porous hydroxyapatite scaffolds coated with collagen I films. Using critical-sized defects created in the radial diaphysis of skeletally mature New Zealand White rabbits, microcomputed tomography and histomorphometry indicated significantly higher bone regeneration, bone mineral density, and bone-implant contact, as well as sustained regeneration over longer durations with lower dosage of rhBMP2 delivered periosteally.


Asunto(s)
Proteína Morfogenética Ósea 2 , Durapatita , Animales , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Colágeno/farmacología , Humanos , Periostio , Conejos , Radio (Anatomía)/diagnóstico por imagen , Andamios del Tejido , Microtomografía por Rayos X
2.
J Mater Sci Mater Med ; 32(8): 94, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34390404

RESUMEN

Beta-tricalcium phosphate (ß-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:ß-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the ß-TCP content while maintaining printability. Post-sintering, the gelatin:ß-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing ß-TCP content. The gelatin:ß-TCP:CMC ink (25:75 gelatin:ß-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous ß-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45-60%) and fluid conductance (between 1.04 ×10-9 and 2.27 × 10-9 m4s/kg) of the ß-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications.


Asunto(s)
Fosfatos de Calcio/química , Impresión Tridimensional , Andamios del Tejido/química , Regeneración Ósea , Sustitutos de Huesos/química , Carboximetilcelulosa de Sodio/química , Proliferación Celular , Cerámica/química , Fuerza Compresiva , Humanos , Ensayo de Materiales , Porosidad , Presión , Estrés Mecánico , Ingeniería de Tejidos/métodos , Diente/fisiología , Difracción de Rayos X
3.
Cell Mol Bioeng ; 13(5): 507-526, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33184580

RESUMEN

BACKGROUND: Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis. METHODS: The interaction between mesenchymal stem cells (MSCs) seeded on hydroxyapatite scaffolds of 450, 340, and 250 µm pores and microvascular fragments (MVFs) seeded within 20 mg/mL fibrin hydrogels that were cast into the cell-seeded scaffolds, was assessed in vitro over 21 days and compared to the fibrin hydrogels without scaffold but containing both MSCs and MVFs. mRNA sequencing was performed across all groups and a computational mechanics model was developed to validate architecture effects on predicting vascularization driven by stiffer matrix behavior at scaffold surfaces compared to the pore interior. RESULTS: Lectin staining of decalcified scaffolds showed continued vessel growth, branching and network formation at 14 days. The fibrin gel provides no resistance to spread-out capillary networks formation, with greater vessel loops within the 450 µm pores and vessels bridging across 250 µm pores. Vessel growth in the scaffolds was observed to be stimulated by hypoxia and successive angiogenic signaling. Fibrin gels showed linear fold increase in VEGF expression and no change in BMP2. Within scaffolds, there was multiple fold increase in VEGF between days 7 and 14 and early multiple fold increases in BMP2 between days 3 and 7, relative to fibrin. There was evidence of yap/taz based hippo signaling and mechanotransduction in the scaffold groups. The vessel growth models determined by computational modeling matched the trends observed experimentally. CONCLUSION: The differing nature of hypoxia signaling between scaffold systems and mechano-transduction sensing matrix mechanics were primarily responsible for differences in osteogenic cell and microvessel growth. The computational model implicated scaffold architecture in dictating branching morphology and strain in the hydrogel within pores in dictating vessel lengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...