Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(2): e0193272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466468

RESUMEN

Single-stranded DNA (ssDNA) is a product of many cellular processes that involve double-stranded DNA, for example during DNA replication and repair, and is formed transiently in many others. Measurement of ssDNA formation is fundamental for understanding many such processes. The availability of a fluorescent biosensor for the determination of single-stranded DNA provides an important route to achieve this. Single-stranded DNA binding proteins (SSBs) protect ssDNA from degradation, but can be displaced to allow processing of the ssDNA. Their tight binding of ssDNA means that they are very good candidates for the development of a biosensor. Previously, the single stranded DNA binding protein from Escherichia coli, labeled with a fluorophore, (DCC-EcSSB) was developed and used for this purpose. However, the multiple binding modes of this protein meant that interpretation of DCC-EcSSB fluorescence was potentially complex in terms of determining the amount of ssDNA. Here, we present an improved biosensor, developed using the tetrameric SSB from Plasmodium falciparum as a new scaffold for fluorophore attachment. Each subunit of this tetrameric SSB was labeled with a diethylaminocoumarin fluorophore at a single site on its surface, such that there is a very large, 20-fold, fluorescence increase when it binds to ssDNA. This adduct can be used as a biosensor to report ssDNA formation. Because SSB from this organism has a single mode of binding ssDNA, namely 65-70 bases per tetramer, over a wide range of conditions, the fluorescent SSB allows simple quantitation of ssDNA. The binding is fast, possibly diffusion controlled, and tight (dissociation constant for DCC-PfSSB <5 pM). Its suitability for real-time assays of ssDNA formation was demonstrated by measurement of AddAB helicase activity, unwinding double-stranded DNA.


Asunto(s)
Técnicas Biosensibles , ADN Protozoario/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Colorantes Fluorescentes/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , ADN Protozoario/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
2.
Biochemistry ; 53(6): 1092-104, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24484052

RESUMEN

The dimethylarginine dimethylaminohydrolase (DDAH) enzyme family has been the subject of substantial investigation as a potential therapeutic target for the regulation of vascular tension. DDAH enzymes catalyze the conversion of asymmetric N(η),N(η)-dimethylarginine (ADMA) to l-citrulline. Here the influence of substrate and product binding on the dynamic flexibility of DDAH from Pseudomonas aeruginosa (PaDDAH) has been assessed. A combination of heteronuclear NMR spectroscopy, static and time-resolved fluorescence measurements, and atomistic molecular dynamics simulations was employed. A monodisperse monomeric variant of the wild-type enzyme binds the reaction product l-citrulline with a low millimolar dissociation constant. A second variant, engineered to be catalytically inactive by substitution of the nucleophilic Cys249 residue with serine, can still convert the substrate ADMA to products very slowly. This PaDDAH variant also binds l-citrulline, but with a low micromolar dissociation constant. NMR and molecular dynamics simulations indicate that the active site "lid", formed by residues Gly17-Asp27, exhibits a high degree of internal motion on the picosecond-to-nanosecond time scale. This suggests that the lid is open in the apo state and allows substrate access to the active site that is otherwise buried. l-Citrulline binding to both protein variants is accompanied by an ordering of the lid. Modification of PaDDAH with a coumarin fluorescence reporter allowed measurement of the kinetic mechanism of the PaDDAH reaction. A combination of NMR and kinetic data shows that the catalytic turnover of the enzyme is not limited by release of the l-citrulline product. The potential to develop the coumarin-PaDDAH adduct as an l-citrulline sensor is discussed.


Asunto(s)
Amidohidrolasas/metabolismo , Citrulina/metabolismo , Amidohidrolasas/genética , Arginina/análogos & derivados , Arginina/metabolismo , Dominio Catalítico , Cinética , Ligandos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Pseudomonas aeruginosa/enzimología
3.
Nucleic Acids Res ; 41(9): 5010-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23535146

RESUMEN

The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Plásmidos/genética , Biotinilación , ADN de Cadena Simple/metabolismo , Ácidos Nucleicos Inmovilizados/metabolismo , Microscopía Fluorescente , Multimerización de Proteína , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...