Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Int ; 16(5): 958-965, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39311345

RESUMEN

Sensory integration is the province of the parietal lobe. The non-dominant hemisphere is responsible for both body sides, while the dominant hemisphere is responsible for the contralateral hemi-body. Furthermore, the posterior cingulate cortex (PCC) participates in a network involved in spatial orientation, attention, and spatial and episodic memory. Laser interstitial thermotherapy (LiTT) is a minimally invasive surgery for focal drug-resistant epilepsy (DRE) that can target deeper brain regions, and thus, region-specific symptoms can emerge. Here, we present an 18-year-old right-handed male with focal DRE who experienced seizures characterized by sensations of déjà vu, staring spells, and language disruption. A comprehensive evaluation localized the seizure focus and revealed a probable focal cortical dysplasia (FCD) in the left posterior cingulate gyrus. The patient underwent uneventful LiTT of the identified lesion. Post-operatively, he developed transient ipsilateral spatial neglect and contralateral sensory loss, as well as acalculia. His sensory symptoms gradually improved after the surgery, and he remained seizure-free after the intervention for at least 10 months (until the time of this writing). This rare case of ipsilateral spatial and visual hemineglect post-LiTT in epilepsy underscores the importance of recognizing atypical neurosurgical outcomes and considering individual variations in brain anatomy and function. Understanding the dynamics of cortical connectivity and handedness, particularly in pediatric epilepsy, may be crucial in anticipating and managing neurocognitive effects following epilepsy surgery.

2.
medRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108522

RESUMEN

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

3.
J Neurosurg Case Lessons ; 8(5)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074398

RESUMEN

BACKGROUND: Focal epilepsy caused by a posterior fossa lesion is a rare phenomenon. In these cases, seizure onset typically occurs during the first few months of life, with episodes of epileptic hemifacial spasms and abnormal eye movements. Patients often present with drug-resistant epilepsy and often require resection for the best chance of seizure freedom. OBSERVATIONS: The authors present the case of a 19-month-old male with intractable epileptic hemifacial spasms and a dorsally exophytic right brainstem and middle cerebellar peduncle hamartoma, following 2 prior subtotal resections. The authors recommended a third suboccipital craniotomy with intraoperative electrocorticography, which revealed interictal spiking from an intralesional depth electrode. Near-total resection led to durable seizure freedom. LESSONS: Although posterior fossa lesions are rarely associated with epileptiform activity, this case demonstrates that pediatric patients with epileptic hemifacial spasms associated with a posterior fossa lesion may respond favorably to resection. Furthermore, this case demonstrates that intralesional electrocorticography can detect epileptic activity in posterior fossa lesions, which may predict postoperative seizure outcomes. https://thejns.org/doi/10.3171/CASE2452.

4.
J Clin Neurophysiol ; 41(5): 405-409, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935653

RESUMEN

PURPOSE: Stereoelectroencephalography (SEEG) is widely performed on individuals with medically refractory epilepsy for whom invasive seizure localization is desired. Despite increasing adoption in many centers across the world, no standardized electrode naming convention exists, generating confusion among both clinical and research teams. METHODS: We have developed a novel nomenclature, named the Standardized Electrode Nomenclature for SEEG Applications system. Concise, unique, informative, and unambiguous labels provide information about entry point, deep targets, and relationships between electrodes. Inter-rater agreement was evaluated by comparing original electrode names from 10 randomly sampled cases (including 136 electrodes) with those prospectively assigned by four additional blinded raters. RESULTS: The Standardized Electrode Nomenclature for SEEG Application system was prospectively implemented in 40 consecutive patients undergoing SEEG monitoring at our institution, creating unique electrode names in all cases, and facilitating implantation design, SEEG recording and mapping interpretation, and treatment planning among neurosurgeons, neurologists, and neurophysiologists. The inter-rater percent agreement for electrode names among two neurosurgeons, two epilepsy neurologists, and one neurosurgical fellow was 97.5%. CONCLUSIONS: This standardized naming convention, Standardized Electrode Nomenclature for SEEG Application, provides a simple, concise, reproducible, and informative method for specifying the target(s) and relative position of each SEEG electrode in each patient, allowing for successful sharing of information in both the clinical and research settings. General adoption of this nomenclature could pave the way for improved communication and collaboration between institutions.


Asunto(s)
Electrodos Implantados , Electroencefalografía , Técnicas Estereotáxicas , Terminología como Asunto , Humanos , Electroencefalografía/normas , Electroencefalografía/métodos , Técnicas Estereotáxicas/normas , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Masculino , Encéfalo/fisiopatología , Encéfalo/fisiología , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/clasificación
5.
Ann Clin Transl Neurol ; 11(6): 1643-1647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711225

RESUMEN

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.


Asunto(s)
Proteínas de Homeodominio , Trastornos del Movimiento , Factores de Transcripción , Humanos , Masculino , Femenino , Trastornos del Movimiento/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/etiología , Preescolar , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Lactante , Mutación Missense , Niño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...