Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 16: 7813-7830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880610

RESUMEN

INTRODUCTION: Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. METHODS: A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. RESULTS: The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton's jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. CONCLUSION: The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Gelatina de Wharton , Animales , Ratones , Imagen Molecular , Osteoporosis/diagnóstico por imagen , Osteoporosis/terapia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN
2.
Sci Rep ; 11(1): 22430, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789743

RESUMEN

The occurrence of epithelial-mesenchymal transition (EMT) within tumors, which enables invasion and metastasis, is linked to cancer stem cells (CSCs) with drug and radiation resistance. We used two specific peptides, F7 and SP peptides, to detect EMT derived cells or CSCs. Human tongue squamous carcinoma cell line-SAS transfected with reporter genes was generated and followed by spheroid culture. A small molecule inhibitor-Unc0642 and low-dose ionizing radiation (IR) were used for induction of EMT. Confocal microscopic imaging and fluorescence-activated cell sorting analysis were performed to evaluate the binding ability and specificity of peptides. A SAS xenograft mouse model with EMT induction was established for assessing the binding affinity of peptides. The results showed that F7 and SP peptides not only specifically penetrated into cytoplasm of SAS cells but also bound to EMT derived cells and CSCs with high nucleolin and vimentin expression. In addition, the expression of CSC marker and the binding of peptides were increased in tumors isolated from Unc0642/IR-treated groups. Our study demonstrates the potential of these peptides for detecting EMT derived cells or CSCs and might provide an alternative isolation method for these subpopulations within the tumor in the future.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Neoplasias de la Lengua/metabolismo , Vimentina/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dimetilsulfóxido/administración & dosificación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de la radiación , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Quinazolinas/administración & dosificación , Esferoides Celulares , Neoplasias de la Lengua/patología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445342

RESUMEN

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-ß (Aß) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aßs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Inhibidores de Histona Desacetilasas/farmacocinética , Histona Desacetilasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Anilidas/química , Anilidas/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Fluoroacetatos/química , Fluoroacetatos/farmacocinética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066508

RESUMEN

Ovarian cancer (OC) metastases frequently occur through peritoneal dissemination, and they contribute to difficulties in treatment. While photodynamic therapy (PDT) has the potential to treat OC, its use is often limited by tissue penetration depth and tumor selectivity. Herein, we combined Cerenkov radiation (CR) emitted by 18F-FDG accumulated in tumors as an internal light source and several photosensitizer (PS) candidates with matched absorption bands, including Verteporfin (VP), Chlorin e6 (Ce6) and 5'-Aminolevulinic acid (5'-ALA), to evaluate the anti-tumor efficacy. The in vitro effect of CR-induced PDT (CR-PDT) was evaluated using a cell viability assay, and the efficiency of PS was assessed by measuring the singlet oxygen production. An intraperitoneal ES2 OC mouse model was used for in vivo evaluation of CR-PDT. Positron emission tomography (PET) imaging and bioluminescence-based imaging were performed to monitor the biologic uptake of 18F-FDG and the therapeutic effect. The in vitro studies demonstrated Ce6 and VP to be more effective PSs for CR-PDT. Moreover, VP was more efficient in the generation of singlet oxygen and continued for a long time when exposed to fluoro-18 (18F). Combining CR emitted by 18F-FDG and VP treatment not only significantly suppressed tumor growth, but also prolonged median survival times compared to either monotherapy.


Asunto(s)
Fluorodesoxiglucosa F18/uso terapéutico , Neoplasias Ováricas/terapia , Fotoquimioterapia , Radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Femenino , Inyecciones Intraperitoneales , Ratones Endogámicos BALB C
5.
Biomedicines ; 9(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073900

RESUMEN

The accumulation of extracellular ß-amyloid (Aß) plaques within the brain is unique to Alzheimer's disease (AD) and thought to induce synaptic deficits and neuronal loss. Optimal therapies should tackle the core AD pathophysiology and prevent the decline in memory and cognitive functions. This study aimed to evaluate the therapeutic performance of mesenchymal stem cell-derived exosomes (MSC-exosomes), which are secreted membranous elements encapsulating a variety of MSC factors, on AD. A human neural cell culture model with familial AD (FAD) mutations was established and co-cultured with purified MSC-exosomes. 2-[18F]Fluoro-2-deoxy-d-glucose ([18F]FDG) and novel object recognition (NOR) testing were performed before/after treatment to evaluate the therapeutic effect in vivo. The AD-related pathology and the expression of neuronal memory/synaptic plasticity-related genes were also evaluated. The results showed that MSC-exosomes reduced Aß expression and restored the expression of neuronal memory/synaptic plasticity-related genes in the cell model. [18F]FDG-PET imaging and cognitive assessment revealed a significant improvement in brain glucose metabolism and cognitive function in AD transgenic mice. The phase of neurons and astrocytes in the brain of AD mice were also found to be regulated after treatment with MSC-exosomes. Our study demonstrates the therapeutic mechanism of MSC-exosomes and provides an alternative therapeutic strategy based on cell-free MSC-exosomes for the treatment of AD.

6.
Mol Imaging Biol ; 23(3): 361-371, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216285

RESUMEN

PURPOSE: Mesenchymal stem cell-derived EVs (MSC-EVs) are demonstrated to have similar therapeutic effect as their cells of origin and represent an attractive cell-free stem cell therapy. With the potential to be the future medical regimen, the information of fate and behavior of MSC-EVs in the living subject should be urgently gathered. This study aimed to track MSC-EVs by 111In-labeling and µSPECT/CT imaging. PROCEDURES: Wharton's jelly-MSC-EVs (WJ-MSC-EVs) were isolated using Exo-Prep kit followed by characterization of expressing markers and size. After labeled by 111In-oxine, 111In-EVs were injected into C57BL/6 mice followed by µSPECT/CT imaging. Organs were then taken out for ex vivo biodistribution analysis. RESULTS: The radiochemical purity of 111In-EVs was > 90 % and remained stable up to 24 h. The image results showed that with injection of 111In-EVs, the signal mainly accumulated in the liver, spleen, and kidney, compared to that in lung and kidney after 111In-oxine injection. The ex vivo biodistribution showed the similar pattern to that of imaging. Chelation of free 111In with EDTA was found necessary to reduce the nonspecific accumulation of signal. CONCLUSION: This study demonstrated the feasibility of radiolabeling WJ-MSC-EVs with 111In-oxine for in vivo imaging and quantitative analysis in a mouse model. This simple and quick labeling method preserves the characteristics of WJ-MSC-EVs. The results in this study provide a thorough and objective basis for future clinical study.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/citología , Compuestos Organometálicos/química , Oxiquinolina/análogos & derivados , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Linaje de la Célula , Proliferación Celular , Medios de Cultivo Condicionados , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Nanopartículas , Oxiquinolina/química , Distribución Tisular , Gelatina de Wharton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...