Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(2): 1072-1081, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346263

RESUMEN

Perovskite related oxides ABO3-δ exhibiting mixed ionic-electronic conductivity (MIEC) possess large deviations from the oxygen stoichiometry. When providing excellent application potential, this feature also makes it very difficult to study the reaction mechanism between such oxides and molecular oxygen, also known as the oxygen reduction reaction. The complexity of the theoretical interpretation of kinetic experiments originates from the significant dependence of the kinetic and equilibrium properties of MIEC oxides on δ. It is proposed to consider such grossly nonstoichiometric oxides having different oxygen nonstoichiometry as chemical homologues participating in the oxygen exchange reaction and forming a series continuous in δ. The continuous homologous series approach is considered using the example of SrCo0.9Ta0.1O3-δ, an SOFC cathode material. The equilibrium and kinetic properties of the oxide were studied by new methods of oxygen partial pressure relaxation and oxygen release. Linear free-energy relationships have been discovered in the homologous series: thermodynamic and kinetic enthalpy-entropy compensations, as well as the Brønsted-Evans-Polanyi relation. A relationship has been established between the change in the observed LFERs and the morphotropic phase transition in the oxide.

2.
J Phys Chem A ; 124(2): 300-310, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31821761

RESUMEN

Mechanical response of single crystals to light, temperature, and/or force-an emerging platform for the development of new organic actuating materials for soft robotics-has recently been quantitatively described by a general and robust mathematical model ( Chem. Rev . 2015 , 115 , 12440 - 12490 ). The model can be used to extract accurate activation energies and kinetics of solid-state chemical reactions simply by tracking the time-dependent bending of the crystal. Here we illustrate that deviations of the macroscopic strain in the crystal from that predicted by the model reveal the existence of additional, "hidden" chemical or physical processes, such as sustained structural relaxation between the chemical transformation and the resulting macroscopic deformation of the crystal. This is illustrated with photobendable single crystals of 4-hydroxy-2-(2-pyridinylmethylene)hydrazide, a photochemical switch that undergoes E-to-Z isomerization. The irreversible isomerization in these crystals results in amorphization and plastic deformation that are observed as poor correlation between the transformation extent and the induced strains. The occurrence of these processes was independently confirmed by X-ray diffraction and differential scanning calorimetry. An extended mathematical model is proposed to account for this complex mechanical response.

3.
Phys Chem Chem Phys ; 20(27): 18447-18454, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29947385

RESUMEN

A novel methodology for the analysis of oxygen exchange in practically important nonstoichiometric oxides with mixed ionic electronic conductivity (MIEC) is suggested. It is based on the fact that the kinetic and thermodynamic properties of such oxides vary continuously with oxygen stoichiometry. This allows MIEC oxides to be considered as a homologous series, with the difference that traditional series are discrete in their chemical composition whereas MIEC oxides are continuous in oxygen stoichiometry. Analysis of the relations between Gibbs energies of reactions and activation barriers traditionally performed for homologous series can be useful in studies of oxygen exchange in MIEC oxides. To demonstrate the approach, thermodynamic and oxygen-exchange kinetics parameters are measured as functions of oxygen nonstoichiometry δ for two perovskites, SrCo0.8Fe0.2O3-δ and SrFeO3-δ, having metal-like and p-type semiconducting conductivities, respectively. Both oxides are shown to obey linear free energy relationships of the Brønsted-Evans-Polanyi form in spite of their different types of electronic structures. The results open up new possibilities for understanding the mechanism of the rate determining step of oxygen exchange in MIEC oxides.

4.
IUCrJ ; 4(Pt 5): 588-597, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28932405

RESUMEN

For martensitic transformations the macroscopic crystal strain is directly related to the corresponding structural rearrangement at the microscopic level. In situ optical microscopy observations of the interface migration and the change in crystal shape during a displacive single crystal to single crystal transformation can contribute significantly to understanding the mechanism of the process at the atomic scale. This is illustrated for the dehydration of samarium oxalate decahydrate in a study combining optical microscopy and single-crystal X-ray diffraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA