Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300320

RESUMEN

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Asunto(s)
Orthobunyavirus , Glucosilceramidas , Acoplamiento Viral , Lipidómica , Espectrometría de Masas
2.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252473

RESUMEN

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Asunto(s)
Espacio Extracelular , Factor 2 de Crecimiento de Fibroblastos , Dimerización , ATPasa Intercambiadora de Sodio-Potasio , Disulfuros
3.
Subcell Biochem ; 106: 113-152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38159225

RESUMEN

As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.


Asunto(s)
Internalización del Virus , Virus , Microscopía por Crioelectrón/métodos , Virus/genética , Virus/metabolismo , Membrana Celular/metabolismo , Fusión de Membrana
4.
Biomaterials ; 303: 122399, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992599

RESUMEN

Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Infecciones por VIH , Ratones , Humanos , Animales , Transducción Genética , Dependovirus/genética , Vectores Genéticos/genética , Terapia Genética
5.
Nat Commun ; 14(1): 7894, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036567

RESUMEN

Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicación Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Orgánulos/metabolismo
6.
Cell ; 186(22): 4834-4850.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37794589

RESUMEN

Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.


Asunto(s)
COVID-19 , ARN Viral , Humanos , COVID-19/metabolismo , Endonucleasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral
7.
Emerg Microbes Infect ; 12(2): 2223727, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37306660

RESUMEN

Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures. While it has been proposed that also EBOV IBs are liquid organelles, this has so far not been formally demonstrated. Here we used a combination of live cell microscopy, fluorescence recovery after photobleaching assays, and mutagenesis approaches together with reverse genetics-based generation of recombinant viruses to study the formation of EBOV IBs. Our results demonstrate that EBOV IBs are indeed liquid organelles, and that oligomerization but not IDRs of the EBOV nucleoprotein plays a key role in their formation. Additionally, VP35 (often considered the phosphoprotein-equivalent of EBOV) is not essential for IB formation, but alters their liquid behaviour. These findings define the molecular mechanism for the formation of EBOV IBs, which play a central role in the life cycle of this deadly virus.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Cuerpos de Inclusión , Humanos , Ebolavirus/genética , Nucleoproteínas/genética , Fosfoproteínas/genética
8.
Curr Opin Virol ; 61: 101338, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348443

RESUMEN

Cellular cryo-electron tomography (cryo-ET) offers 3D snapshots at molecular resolution capturing pivotal steps during viral infection. However, tomogram quality depends on the vitrification level of the sample and its thickness. In addition, mandatory inactivation protocols to assure biosafety when handling highly pathogenic viruses during cryo-ET can compromise sample preservation. Here, we focus on different strategies applied in cryo-ET and discuss their advantages and limitations with reference to severe acute respiratory syndrome coronavirus 2 studies. We highlight the importance of virus-like particle (VLP) and replicon systems to study virus assembly and replication in a cellular context without inactivation protocols. We discuss the application of chemical fixation and different irradiation methods in cryo-ET sample preparation and acquisition workflows.


Asunto(s)
COVID-19 , Virosis , Humanos , Tomografía con Microscopio Electrónico/métodos , Contención de Riesgos Biológicos , Microscopía por Crioelectrón/métodos
9.
Cell Host Microbe ; 31(4): 616-633.e20, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37003257

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/metabolismo , Internalización del Virus , Virus de la Influenza A/metabolismo , Membrana Celular/metabolismo , Lípidos , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
EMBO J ; 42(11): e113578, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082863

RESUMEN

Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/metabolismo , Fusión de Membrana , Proteínas del Núcleo Viral/metabolismo , Endosomas/metabolismo , Proteínas de la Matriz Viral
11.
mBio ; 13(2): e0370521, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229634

RESUMEN

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C Crónica , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Cobicistat , Cricetinae , Progresión de la Enfermedad , Humanos , Mesocricetus , Pandemias , SARS-CoV-2 , Carga Viral
12.
J Struct Biol ; 213(2): 107742, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33971285

RESUMEN

Cryo-electron tomography (cryo-ET) is a pivotal imaging technique for studying the structure of pleomorphic enveloped viruses and their interactions with the host at native conditions. Owing to the limited tilting range of samples with a slab geometry, electron tomograms suffer from so-called missing wedge information in Fourier space. In dual-axis cryo-ET, two tomograms reconstructed from orthogonally oriented tilt series are combined into a tomogram with improved resolution as the missing wedge information is reduced to a pyramid. Volta phase plate (VPP) allows to perform in-focus cryo-ET with high contrast transfer at low-resolution frequencies and thus its application may improve the quality of dual-axis tomograms. Here, we compare dual-axis cryo-ET with and without VPP on Ebola virus-like particles to visualize and segment viral and host cell proteins within the membrane-enveloped filamentous particles. Dual-axis VPP cryo-ET reduces the missing wedge information and ray artifacts arising from the weighted back-projection during tomogram reconstruction, thereby minimizing ambiguity in the analysis of crowded environments and facilitating 3D segmentation. We show that dual-axis VPP tomograms provide a comprehensive description of macromolecular organizations such as nucleocapsid assembly states, the distribution of glycoproteins on the viral envelope and asymmetric arrangements of the VP40 layer in non-filamentous regions of virus-like particles. Our data reveal actin filaments within virus-like particles in close proximity to the viral VP40 scaffold, suggesting a direct interaction between VP40 and actin filaments. Dual-axis VPP cryo-ET provides more complete 3D information at high contrast and allows for better interpretation of macromolecule interactions and pleomorphic organizations.


Asunto(s)
Actinas/química , Microscopía por Crioelectrón/métodos , Ebolavirus/química , Proteínas de la Matriz Viral/química , Actinas/metabolismo , Membrana Celular , Ebolavirus/metabolismo , Ebolavirus/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Células HEK293 , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Humanos , Imagenología Tridimensional , Nucleocápside/química , Proteínas de la Matriz Viral/metabolismo
13.
Methods Cell Biol ; 162: 273-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707016

RESUMEN

In situ cryo-electron tomography of cryo-focused ion beam (cryo-FIB) milled cells enables the study of cellular organelles in unperturbed conditions and close to the molecular resolution. However, due to the crowdedness of the cellular environment, the identification of individual macromolecular complexes either on organelles or inside the cytosol in cryo-electron tomograms is challenging. Cryo-correlative light and electron microscopy (cryo-CLEM) employs a fluorescently labeled feature of interest imaged by cryo-light microscopy that is correlated to cryo-electron microscopy maps of cryo-FIB milled lamellae using correlation markers discernable by both imaging methods. Here, we provide a protocol for a post-correlation on-lamella cryo-CLEM approach for localization of fluorescently labeled organelles of interest in cryo-lamellae after cryo-FIB milling and tomography of adherent plunge frozen cells.


Asunto(s)
Tomografía con Microscopio Electrónico , Electrones , Microscopía por Crioelectrón , Iones , Flujo de Trabajo
14.
Commun Biol ; 4(1): 137, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514845

RESUMEN

Lamellar bodies (LBs) are surfactant-rich organelles in alveolar cells. LBs disassemble into a lipid-protein network that reduces surface tension and facilitates gas exchange in the alveolar cavity. Current knowledge of LB architecture is predominantly based on electron microscopy studies using disruptive sample preparation methods. We established and validated a post-correlation on-lamella cryo-correlative light and electron microscopy approach for cryo-FIB milled cells to structurally characterize and validate the identity of LBs in their unperturbed state. Using deconvolution and 3D image registration, we were able to identify fluorescently labeled membrane structures analyzed by cryo-electron tomography. In situ cryo-electron tomography of A549 cells as well as primary Human Small Airway Epithelial Cells revealed that LBs are composed of membrane sheets frequently attached to the limiting membrane through "T"-junctions. We report a so far undescribed outer membrane dome protein complex (OMDP) on the limiting membrane of LBs. Our data suggest that LB biogenesis is driven by parallel membrane sheet import and by the curvature of the limiting membrane to maximize lipid storage capacity.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Membranas Intracelulares/ultraestructura , Neoplasias Pulmonares/ultraestructura , Orgánulos/ultraestructura , Alveolos Pulmonares/ultraestructura , Células A549 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Orgánulos/metabolismo , Alveolos Pulmonares/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
15.
Nat Commun ; 11(1): 5885, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208793

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic ß-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/fisiología , Replicación Viral , Células A549 , Animales , COVID-19 , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Microscopía por Crioelectrón , Vesículas Citoplasmáticas/virología , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/virología , Humanos , Pandemias , Neumonía Viral/virología , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2 , Células Vero , Virión/química , Virión/metabolismo , Ensamble de Virus
16.
Viruses ; 12(8)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784757

RESUMEN

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/virología , Neumonía Viral/virología , ARN Viral/aislamiento & purificación , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Fenómenos Magnéticos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcripción Reversa , SARS-CoV-2 , Sensibilidad y Especificidad
17.
Sci Transl Med ; 12(556)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32719001

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) coronavirus is a major public health challenge. Rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. Approaches to detect viral RNA based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) have potential as simple, scalable, and broadly applicable testing methods. Compared to RT quantitative polymerase chain reaction (RT-qPCR)-based methods, RT-LAMP assays require incubation at a constant temperature, thus eliminating the need for sophisticated instrumentation. Here, we tested a two-color RT-LAMP assay protocol for detecting SARS-CoV-2 viral RNA using a primer set specific for the N gene. We tested our RT-LAMP assay on surplus RNA samples isolated from 768 pharyngeal swab specimens collected from individuals being tested for COVID-19. We determined the sensitivity and specificity of the RT-LAMP assay for detecting SARS-CoV-2 viral RNA. Compared to an RT-qPCR assay using a sensitive primer set, we found that the RT-LAMP assay reliably detected SARS-CoV-2 RNA with an RT-qPCR cycle threshold (CT) number of up to 30, with a sensitivity of 97.5% and a specificity of 99.7%. We also developed a swab-to-RT-LAMP assay that did not require a prior RNA isolation step, which retained excellent specificity (99.5%) but showed lower sensitivity (86% for CT < 30) than the RT-LAMP assay. In addition, we developed a multiplexed sequencing protocol (LAMP-sequencing) as a diagnostic validation procedure to detect and record the outcome of RT-LAMP reactions.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Neumonía Viral/diagnóstico , Neumonía Viral/virología , COVID-19 , Colorimetría/métodos , Colorimetría/estadística & datos numéricos , Infecciones por Coronavirus/epidemiología , Proteínas de la Nucleocápside de Coronavirus , Humanos , Técnicas de Diagnóstico Molecular/estadística & datos numéricos , Técnicas de Amplificación de Ácido Nucleico/estadística & datos numéricos , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Neumonía Viral/epidemiología , ARN Viral/genética , ARN Viral/aislamiento & purificación , RNA-Seq , SARS-CoV-2 , Sensibilidad y Especificidad , Investigación Biomédica Traslacional
18.
J Cell Biol ; 218(8): 2797-2811, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31289126

RESUMEN

Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called "MultiCLEM," allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microscopía Electrónica , Pared Celular/metabolismo , Pared Celular/ultraestructura , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mitocondrias/ultraestructura , Presión Osmótica , Peroxisomas/metabolismo , Fenotipo , Saccharomyces cerevisiae/ultraestructura
19.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794042

RESUMEN

The highly conserved cytoplasmic tail of influenza virus glycoprotein hemagglutinin (HA) contains three cysteines, posttranslationally modified by covalently bound fatty acids. While viral HA acylation is crucial in virus replication, its physico-chemical role is unknown. We used virus-like particles (VLP) to study the effect of acylation on morphology, protein incorporation, lipid composition, and membrane fusion. Deacylation interrupted HA-M1 interactions since deacylated mutant HA failed to incorporate an M1 layer within spheroidal VLP, and filamentous particles incorporated increased numbers of neuraminidase (NA). While HA acylation did not influence VLP shape, lipid composition, or HA lateral spacing, acylation significantly affected envelope curvature. Compared to wild-type HA, deacylated HA is correlated with released particles with flat envelope curvature in the absence of the matrix (M1) protein layer. The spontaneous curvature of palmitate was calculated by molecular dynamic simulations and was found to be comparable to the curvature values derived from VLP size distributions. Cell-cell fusion assays show a strain-independent failure of fusion pore enlargement among H2 (A/Japan/305/57), H3 (A/Aichi/2/68), and H3 (A/Udorn/72) viruses. In contradistinction, acylation made no difference in the low-pH-dependent fusion of isolated VLPs to liposomes: fusion pores formed and expanded, as demonstrated by the presence of complete fusion products observed using cryo-electron tomography (cryo-ET). We propose that the primary mechanism of action of acylation is to control membrane curvature and to modify HA's interaction with M1 protein, while the stunting of fusion by deacylated HA acting in isolation may be balanced by other viral proteins which help lower the energetic barrier to pore expansion.IMPORTANCE Influenza A virus is an airborne pathogen causing seasonal epidemics and occasional pandemics. Hemagglutinin (HA), a glycoprotein abundant on the virion surface, is important in both influenza A virus assembly and entry. HA is modified by acylation whose removal abrogates viral replication. Here, we used cryo-electron tomography to obtain three-dimensional images to elucidate a role for HA acylation in VLP assembly. Our data indicate that HA acylation contributes to the capability of HA to bend membranes and to HA's interaction with the M1 scaffold protein during virus assembly. Furthermore, our data on VLP and, by hypothesis, virus suggests that HA acylation, while not critical to fusion pore formation, contributes to pore expansion in a target-dependent fashion.


Asunto(s)
Membrana Celular/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología , Lipoilación/fisiología , Fusión de Membrana , Ensamble de Virus/fisiología , Acilación , Animales , Membrana Celular/metabolismo , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Virión/fisiología , Replicación Viral
20.
Virology ; 509: 131-132, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644977

RESUMEN

Influenza A virus membrane fusion and disassembly, prerequisite processes for viral infectivity, depend on acidic pH. In a recent study, Zhirnov et al. reported an important finding-that influenza virions are not permeable to protons unless the hemagglutinin (HA) fusion protein is primed by trypsin cleavage. This raises the question of whether in the viral context the M2 ion channel requires priming prior to its activation by low pH. Here, it is hypothesized that both HA and M2 ion channel direct priming by trypsin is required for their sensitization by low pH.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Tripsina/metabolismo , Proteínas de la Matriz Viral/metabolismo , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...