Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 24(1): 149, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822293

RESUMEN

BACKGROUND: Epilepsy, a chronic brain disorder characterized by abnormal brain activity that causes seizures and other symptoms, is typically treated using anti-epileptic drugs (AEDs) as the first-line therapy. However, due to the variations in their modes of action, identification of effective AEDs often relies on ad hoc trials, which is particularly challenging for pediatric patients. Thus, there is significant value in computational methods capable of assisting in the selection of AEDs, aiming to minimize unnecessary medication and improve treatment efficacy. RESULTS: In this study, we collected 7,507 medical records from 1,000 pediatric epilepsy patients and developed a computational clinical decision-supporting system for AED selection. This system leverages three multi-channel convolutional neural network (CNN) models tailored to three specific AEDs (vigabatrin, prednisolone, and clobazam). Each CNN model predicts whether a respective AED is effective on a given patient or not. The CNN models showed AUROCs of 0.90, 0.80, and 0.92 in 10-fold cross-validation, respectively. Evaluation on a hold-out test dataset further revealed positive predictive values (PPVs) of 0.92, 0.97, and 0.91 for the three respective CNN models, representing that suggested AEDs by our models would be effective in controlling epilepsy with a high accuracy and thereby reducing unnecessary medications for pediatric patients. CONCLUSION: Our CNN models in the system demonstrated high PPVs for the three AEDs, which signifies the potential of our approach to support the clinical decision-making by assisting doctors in recommending effective AEDs within the three AEDs for patients based on their medical history. This would result in a reduction in the number of unnecessary ad hoc attempts to find an effective AED for pediatric epilepsy patients.


Asunto(s)
Anticonvulsivantes , Sistemas de Apoyo a Decisiones Clínicas , Aprendizaje Profundo , Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Adolescente , Femenino , Masculino , Anamnesis , Lactante
2.
Mol Syst Biol ; 19(12): e11801, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37984409

RESUMEN

The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3ß), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Deficiencias en la Proteostasis , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Glucógeno Sintasa Quinasa 3 beta , Enfermedad de Huntington/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA