Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 150(13): 134702, 2019 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954059

RESUMEN

Nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers are a promising platform for quantum sensing applications. Sensitivity of the applications using NV centers in NDs is often limited due to the presence of paramagnetic impurity contents near the ND surface. Here, we investigate near-surface paramagnetic impurities in NDs. Using high-frequency (HF) electron paramagnetic resonance spectroscopy, the near-surface paramagnetic impurity within the shell of NDs is probed and its g-value is determined to be 2.0028(3). Furthermore, HF electron-electron double resonance-detected nuclear magnetic resonance spectroscopy and a first principles calculation show that a possible structure of the near-surface impurity is the negatively charged vacancy V-. The identification of the near-surface impurity by the present investigation provides a promising pathway to improve the NV properties in NDs and the NV-based sensing techniques.

2.
Rev Sci Instrum ; 85(7): 075110, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25085176

RESUMEN

We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107-120 GHz and 215-240 GHz and in the magnetic field range of 0-12.1 T. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet, and a (4)He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Compuestos Alílicos/química , Diseño de Equipo , Helio , Campos Magnéticos , Imanes , Poliestirenos/química , Solventes/química , Temperatura
3.
Sci Rep ; 4: 5061, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24863102

RESUMEN

Long scan times of 3D volumetric MR acquisitions usually necessitate ultrafast in vivo gradient-echo acquisitions, which are intrinsically susceptible to magnetic field inhomogeneities. This is especially problematic for contrast-enhanced (CE)-MRI applications, where non-negligible T2* effect of contrast agent deteriorates the positive signal contrast and limits the available range of MR acquisition parameters and injection doses. To overcome these shortcomings without degrading temporal resolution, ultrafast spin-echo acquisitions were implemented. Specifically, a multiplicative acceleration factor from multiple spin echoes (×32) and compressed sensing (CS) sampling (×8) allowed highly-accelerated 3D Multiple-Modulation-Multiple-Echo (MMME) acquisition. At the same time, the CE-MRI of kidney with Gd-DOTA showed significantly improved signal enhancement for CS-MMME acquisitions (×7) over that of corresponding FLASH acquisitions (×2). Increased positive contrast enhancement and highly accelerated acquisition of extended volume with reduced RF irradiations will be beneficial for oncological and nephrological applications, in which the accurate in vivo 3D quantification of contrast agent concentration is necessary with high temporal resolution.


Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos
4.
J Magn Reson ; 212(2): 386-93, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21875818

RESUMEN

Non-invasive measurements of structural orientation provide unique information regarding the connectivity and functionality of fiber materials. In the present study, we use a capillary model to demonstrate that the direction of fiber structure can be obtained from susceptibility-induced magnetic field anisotropy. The interference pattern between internal and external magnetic field gradients carries the signature of the underlying anisotropic structure and can be measured by MRI-based water diffusion measurements. Through both numerical simulation and experiments, we found that this technique can determine the capillary orientation within 3°. Therefore, susceptibility-induced magnetic field anisotropy may be useful for an alternative tractography method when diffusion anisotropy is small at higher magnetic field strength without the need to rotate the subject inside the scanner.


Asunto(s)
Imagen de Difusión Tensora/métodos , Algoritmos , Anisotropía , Encéfalo , Capilares/anatomía & histología , Simulación por Computador , Campos Electromagnéticos , Procesamiento de Imagen Asistido por Computador , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...