Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(51): e2105337, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34599774

RESUMEN

Understanding the cycling rate-dependent kinetics is crucial for managing the performance of batteries in high-power applications. Although high cycling rates may induce reaction heterogeneity and affect battery lifetime and capacity utilization, such phase transformation dynamics are poorly understood and uncontrollable. In this study, synchrotron-based operando X-ray diffraction is performed to monitor the high-current-induced phase transformation kinetics of LiNi0.6 Co0.2 Mn0.2 O2 . The sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by exploiting the dependence of Li diffusivity on the Li content and electrochemically tuning the initial Li content and distribution, phase separation pathway can be redirected to solid solution kinetics at a high charging rate of 7 C. Finite element analysis further elucidates the effect of the Li-content-dependent diffusion kinetics on the phase transformation pathway. The findings suggest a new direction for optimizing fast-cycling protocols based on the intrinsic properties of the materials.

2.
Data Brief ; 37: 107246, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34258340

RESUMEN

The data presented in this article are related to the computed results reported in the article entitled "A modeling approach to study the performance of Ni-rich layered oxide cathode for lithium-ion battery" [1]. The lithium-ion battery (LIB) employed in the simulation is made up of a LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode and lithium metal foil anode. The numerical simulations were carried out using COMSOL Multiphysics 5.4 software which is based on the finite element (FE) method. The data presented in this manuscript shows how varying particle size and porosity affect the performance of the battery as the discharging rate is varied. Four different particle sizes and six different porosities were varied for the purpose of understanding the above behavior. The data presented can be used to further the analysis reported in the accompanying manuscript and aid in design of other cathode materials for LIB and other battery systems. It can also be used to compare some measured results for validation purposes. A comprehensive analysis of the data is found in [1].

3.
ACS Appl Mater Interfaces ; 9(18): 15433-15438, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28421737

RESUMEN

Tin alloy-based anodes supported by inverse-opal nanoscaffolds undergo large volume changes from (de)lithiation during cyclic battery (dis)charging, affecting their mechanical stability. We perform continuum mechanics-based simulation to study the evolution of internal stresses and strains as a function of the geometry of the active layer(s): (i) thickness of Ni3Sn2 single layer (30 and 60 nm) and (ii) stacking sequence of Ni3Sn2 and amorphous Si in bilayers (60 nm thick). For single Ni3Sn2 active layers, a thinner layer displays higher strains and stresses, which are relevant to mechanical stability, but causes lower strains and stresses in the Ni scaffold. For Ni3Sn2-Si bilayers, the stacking sequence significantly affects the deformation of the active layers and thus its mechanical stability due to different lithiation behaviors and volume changes.

4.
Nat Commun ; 5: 3665, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24722220

RESUMEN

In two-dimensional interfacial assemblies, there is an interplay between molecular ordering and interface geometry, which determines the final morphology and order of entire systems. Here we present the interfacial phenomenon of spontaneous facet formation in a water droplet driven by designed peptide assembly. The identified peptides can flatten the rounded top of a hemispherical droplet into a plane by forming a macroscopic two-dimensional crystal structure. Such ordering is driven by the folding geometry of the peptide, interactions of tyrosine and crosslinked stabilization by cysteine. We discover the key sequence motifs and folding structures and study their sequence-specific assembly. The well-ordered, densely packed, redox-active tyrosine units in the YYACAYY (H-Tyr-Tyr-Ala-Cys-Ala-Tyr-Tyr-OH) film can trigger or enhance chemical/electrochemical reactions, and can potentially serve as a platform to fabricate a molecularly tunable, self-repairable, flat peptide or hybrid film.


Asunto(s)
Péptidos/química , Tirosina/química , Catálisis
5.
PLoS One ; 7(4): e35987, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558295

RESUMEN

An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation.


Asunto(s)
Análisis de Elementos Finitos , Modelos Químicos , Transición de Fase , Acero/química , Simulación por Computador , Aleaciones Dentales/química , Módulo de Elasticidad , Compuestos Férricos/química , Estrés Mecánico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA