Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257196

RESUMEN

To elucidate the anti-inflammatory properties and constituents of Agrimonia pilosa Ledeb. (A. pilosa), a comprehensive investigation was conducted employing activity-guided isolation. The anti-inflammatory effects were evaluated through an in vitro nitric oxide (NO) assay on lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. Seven bio-active compounds with anti-inflammatory properties were successfully isolated from the butanol fraction and identified as follows: quercetin-7-O-ß-d-rhamnoside (1), apigenin-7-O-ß-d-glucopyranoside (2), kaempferol-7-O-ß-d-glucopyranoside (3), quercetin (4), kaempferol (5), apigenin (6), and apigenin-7-O-ß-d-glucuronide-6″-butylester (7). All isolated compounds showed strong NO inhibitory activity with IC50 values ranging from 1.4 to 31 µM. Compound 6 demonstrated the most potent NO inhibition. Compound 7, a rare flavonoid, was discerned as a novel anti-inflammatory agent, ascertained through its inaugural demonstration of nitric oxide inhibition. Subsequently, a comprehensive structure-activity relationship (SAR) analysis was conducted employing eight flavonoids derived from A. pilosa. The outcomes elucidated that flavones exhibit superior NO inhibitory effects compared to flavonols, and the aglycone form manifests greater potency in NO inhibition than the glycone counterpart. These results highlight A. pilosa as a promising source of effective anti-inflammatory agents and indicate its potential as a health-beneficial dietary supplement and therapeutic material.


Asunto(s)
Agrimonia , Flavonoides , Flavonoides/farmacología , Quercetina , Quempferoles , Óxido Nítrico , Antiinflamatorios/farmacología
2.
Antioxidants (Basel) ; 12(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001762

RESUMEN

The Lamiaceae family is widely recognized for its production of essential oils and phenolic compounds that have promising value as pharmaceutical materials. However, the impact of environmental conditions and different harvest stages on the phytochemical composition of Lamiaceae plants remains poorly understood. This study aimed to investigate the effects of harvest time on the phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs), of four Lamiaceae plants-Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)-and was conducted under an environment-controlled system. Although all four plants had RA as the dominant compound, its distribution varied by species. The flowered plants, including AR and OBP, exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the content of total phenolics and RA. The main components of VOCs also differed depending on the plant, with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene). The total VOCs content was highest on the 60th day after transplanting regardless of the species, while the trends of total phenolics, RA content, and antioxidant activities were different depending on whether plant species flowered during the cultivation cycle. There was a steady increase in species that had not flowered, and the highest content and activity of the flowering period were confirmed in the flowering plant species.

3.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360554

RESUMEN

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/anatomía & histología , Fenotipo , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transducción de Señal
4.
Molecules ; 26(15)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34361637

RESUMEN

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at -80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


Asunto(s)
Antiinflamatorios , Antineoplásicos Fitogénicos , Neoplasias/tratamiento farmacológico , Reishi/química , Metabolismo Secundario , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Desecación , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...