Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Cell Rep ; 43(11): 114878, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39412989

RESUMEN

The transcription repressor Bach2 plays a crucial role in shaping humoral immunity, but its cell-autonomous function remains elusive. Here, we reveal the mechanism by which Bach2 regulates effector cell maturation in peripheral B cells. In response to Toll-like receptor (TLR) agonists, Bach2 deficiency promotes the differentiation of follicular, but not marginal zone, B cells into effector cells, producing interleukin (IL)-6 and antibodies. This phenomenon is associated with changes in lipid metabolism, such as increases in CD36 expression, lipid influx, and fatty acid oxidation. Consistent with this, Bach2-deficient B cells exhibit elevated levels of mitochondrial oxidative stress, lipid peroxidation, and p38 activation. Mechanistically, Bach2 acts as a repressor of Cd36, and inhibition of CD36 or fatty acid oxidation reduces the differentiation of naive B cells into IL-6- and antibody-secreting cells. These results indicate Bach2 as a key metabolic checkpoint regulator crucial for maintaining a functionally quiescent state of follicular B cells.

2.
Clin Immunol ; : 110383, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39454740

RESUMEN

Vimentin contributes to the positioning and function of organelles, cell migration, adhesion, and division. However, secreted vimentin accumulates on the cell surface (Mor-Vaknin et al., 2003; Ramos et al., 2020 [1,2]) where it acts as a coreceptor for viral infection and as an autoantigen in inflammatory and autoimmune diseases. The roles of vimentin in Th17 cells were examined in mice with knockdown of vimentin. We also examined whether STAT3 is required for vimentin expression. Vimentin expression was significantly increased in Th17 cells through STAT3 activation, and vimentin+ IL-17+ T cells were markedly increased in the joint and spleen tissues of CIA mice. The arthritis score and expression levels of proinflammatory cytokines were significantly decreased in CIA mice treated with vimentin shRNA vector. In this study, we demonstrated that vimentin is significantly expressed in Th17 cells through STAT3 activation. Our results provide new insights into the role of vimentin in Th17 cells and the complex pathogenesis of RA.

3.
Immunol Lett ; 270: 106935, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396770

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disease caused by infiltrating lymphocytes. FTY720 affects the S1P signaling pathway, which plays a role in T and B cell migration from secondary lymphoid tissues to target organs. In this study, we investigate the regulatory mechanism of FTY720 in the context of SS. METHOD: FTY720 was given orally every day to NOD mice. The salivary flow rate (SFR) and blood glucose level were assayed every 3 weeks. Histopathological features were investigated at the end of the study. In vitro, FTY720 was added to mouse splenocytes, and changes in the lymphocyte subsets were assessed. RESULTS: In vivo, FTY720 increased the SFR and reduced the blood glucose level. The salivary gland histological score and infiltration of the salivary glands by B and T cells were dramatically decreased. Furthermore, STAT expression in the salivary gland was decreased. In vitro, FTY720 inhibited Th17 cells, while increasing regulatory T (Treg) cells, respectively. Also, FTY720 decreased and increased the numbers of germinal center (GC) B cells and regulatory B cells (Breg cells), respectively. FTY720 decreased the IgG level in culture supernatants. Also, STAT3 activation was decreased by FTY720. CONCLUSION: Our results show the therapeutic potential of FTY720 in the context of SS; FTY720 prevents lymphocyte migration from secondary lymphoid organs to target organs.

4.
Lupus Sci Med ; 11(2)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349051

RESUMEN

OBJECTIVE: COVID-19 induces the development of autoimmune diseases, including SLE, which are characterised by inflammation, autoantibodies and thrombosis. However, the effects of COVID-19 on SLE remain unclear. METHODS: We investigated the effects of COVID-19 on SLE development and progression in three animal models. Plasmids encoding SARS-CoV-2 spike protein and ACE2 receptor were injected into R848-induced BALB/C lupus mice, R848-induced IL-1 receptor antagonist knockout (KO) lupus mice and MRL/lpr mice. Serum levels of albumin and autoantibodies, lymphocyte phenotypes and tissue histology were evaluated. RESULTS: In R848-induced BALB/C lupus mice, the SARS-CoV-2 spike protein increased autoantibody and albumin levels compared with vehicle and mock treatments. These mice also exhibited splenomegaly, which was further exacerbated by the spike protein. Flow cytometric analysis revealed elevated T helper 1 cell counts, and histological analysis indicated increased levels of the fibrosis marker protein α-smooth muscle actin. In KO mice, the spike protein induced splenomegaly, severe kidney damage and pronounced lung fibrosis. In the MRL/lpr group, spike protein increased the serum levels of autoantibodies, albumin and the thrombosis marker chemokine (C-X-C motif) ligand 4. CONCLUSION: COVID-19 accelerated the development and progression of lupus by inducing autoantibody production, fibrosis and thrombosis.


Asunto(s)
Autoanticuerpos , COVID-19 , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones Endogámicos BALB C , Ratones Noqueados , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Nefritis Lúpica/patología , Nefritis Lúpica/inmunología , Ratones , COVID-19/inmunología , COVID-19/complicaciones , Autoanticuerpos/sangre , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/inmunología , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Ratones Endogámicos MRL lpr , Femenino , Esplenomegalia/etiología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo
5.
Immunol Lett ; 270: 106924, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260526

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, abnormal inflammation, and fibrosis of the skin and internal organs, notably the skin and lungs, significantly impairing quality of life. There is currently no cure for SSc, and its etiology remains largely unknown, presenting a primary barrier to effective treatment. We investigated the role of interleukin-21 (IL-21) in the pathogenesis of SSc. METHODS: We assessed the expression levels of fibrosis-related genes in human dermal fibroblasts exposed to IL-21 and TGF beta. We also induced SSc in wild-type C57BL/6 mice and IL-21 knockout (KO) mice with a C57BL/6 background using bleomycin (Bleomycin). Histological analyses were conducted on skin and lung tissues from these mice. The distribution and expression levels of fibrosis-related proteins in the tissues were examined via immunohistochemistry and quantitative real-time PCR. Furthermore, we measured the frequency of Th1, Th2, and Th17 cells among splenocytes through flow cytometry. RESULTS: IL-21 activation led to STAT3 phosphorylation more than TGF beta in dermal fibroblasts. In IL-21 KO mice with BLM-induced SSc, skin thickness and lung fibrosis were reduced. The absence of IL-21 in these mice resulted in suppressed expression of fibrosis-related genes, including Col1a1, Col1a2, Col3a1, CTGF, α-SMA, STAT3, and TGFß, in the skin and lungs. It also led to a decreased frequency of Th1, Th2, and Th17 cells, as well as a lower Th17/Treg ratio among splenocytes, factors known to contribute to the development of SSc. CONCLUSIONS: IL-21 contributes to the development of SSc by promoting the expression of fibrosis-related genes and modulating the levels of CD4+ T cells.

6.
Immune Netw ; 24(3): e15, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974211

RESUMEN

Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38934039

RESUMEN

Background: The aim of this study is to investigate the specific pathway involved in human leukocyte antigen (HLA) sensitization using single-cell RNA-sequencing analysis and an allo-sensitized mouse model developed with an HLA.A2 transgenic mouse. Methods: For sensitization, wild-type C57BL/6 mouse received two skin grafts from C57BL/6-Tg(HLA-A2.1)1Enge/J mouse (allogeneic mouse, ALLO). For syngeneic control (SYN), skin grafts were transferred from C57BL/6 to C57BL/6. We performed single-cell RNA-sequencing analysis on splenocytes isolated from ALLO and SYN and compared the gene expression between them. Results: We generated 9,190 and 8,890 single-cell transcriptomes from ALLO and SYN, respectively. Five major cell types (B cells, T cells, natural killer cells, macrophages, and neutrophils) and their transcriptome data were annotated according to the representative differentially expressed genes of each cell cluster. The percentage of B cells was higher in ALLO than it was in SYN. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the highly expressed genes in the B cells from ALLO were mainly associated with antigen processing and presentation pathways, allograft rejection, and the Th17 cell differentiation pathway. Upregulated genes in the T cells of ALLO were involved in the interleukin (IL)-17 signaling pathway. The ratio of Th17 cluster and Treg cluster was increased in the ALLO. On flow cytometry, the percentage of Th17 (IL-17+/CD4+ T) cells was higher and regulatory T cells (FOXP3+/CD4+ T) was lower in the ALLO compared to those in the SYN. Conclusion: Our results indicate that not only the B cell lineage but also the Th17 cells and their cytokine (IL-17) are involved in the sensitization to HLA.

8.
J Transl Med ; 22(1): 323, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561750

RESUMEN

BACKGROUND: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS: A murine SSc model was induced by subcutaneously injecting 100 µg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 µg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS: MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1ß, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION: MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.


Asunto(s)
MicroARNs , Esclerodermia Sistémica , Animales , Ratones , Bleomicina , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/inducido químicamente , Piel/patología
9.
ACS Nano ; 18(14): 10045-10053, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527965

RESUMEN

Hybridization of microbial cells with inorganic nanoparticles that could dramatically improve cellular functions such as electron transfer has been realized by the random attachment or stochastic entry of the nanoparticles. Clearly, the selective growth of inorganic nanoparticles on target functional organelles is ideal for such hybridization. Here, we report the selective growth of gold nanocrystals in the intermembrane space (IMS) of Escherichia coli by exploiting the electron transport chain (ETC). We systematically show that gold ions are permeated through porins in the outer membrane of E. coli and further reduced to gold nanocrystals by the ETC in live E. coli. We directly observe that the resulting gold nanocrystals exist only in the IMS by transmission electron microscopy measurements of cross-sectioned E. coli. Molecular dynamics simulations suggest that once gold ions are reduced to small nuclei by the ETC, the nuclei can be stably physisorbed onto ETC complexes, further supporting the ETC-mediated growth. Finally, we show that the ATP synthesis of E. coli where gold nanocrystals are formed in the IMS is up to 9 times higher than that of E. coli alone. We believe that our work can significantly contribute to not only improving microbial metabolic functions for biological energy conversion but also restoring physiological dysfunctions of microbial cells for biomedicine.


Asunto(s)
Escherichia coli , Nanopartículas , Oro/química , Electrones , Iones
10.
Gut Microbes ; 16(1): 2300846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197259

RESUMEN

Early detection and surgical treatment are essential to achieve a good outcome in gastric cancer (GC). Stage IV and recurrent GC have a poor prognosis. Therefore, new treatments for GC are needed. We investigated the intestinal microbiome of GC patients and attempted to reverse the immunosuppression of the immune and cancer cells of GC patients through the modulation of microbiome metabolites. We evaluated the levels of programmed death-ligand 1 (PD-L1) and interleukin (IL)-10 in the peripheral blood immunocytes of GC patients. Cancer tissues were obtained from patients who underwent surgical resection of GC, and stained sections of cancer tissues were visualized via confocal microscopy. The intestinal microbiome was analyzed using stool samples of healthy individuals and GC patients. Patient-derived avatar model was developed by injecting peripheral blood mononuclear cells (PBMCs) from advanced GC (AGC) patients into NSG mice, followed by injection of AGS cells. PD-L1 and IL-10 had higher expression levels in immune cells of GC patients than in those of healthy controls. The levels of immunosuppressive factors were increased in the immune and tumor cells of tumor tissues of GC patients. The abundances of Faecalibacterium and Bifidobacterium in the intestinal flora were lower in GC patients than in healthy individuals. Butyrate, a representative microbiome metabolite, suppressed the expression levels of PD-L1 and IL-10 in immune cells. In addition, the PBMCs of AGC patients showed increased levels of immunosuppressive factors in the avatar mouse model. Butyrate inhibited tumor growth in mice. Restoration of the intestinal microbiome and its metabolic functions inhibit tumor growth and reverse the immunosuppression due to increased PD-L1 and IL-10 levels in PBMCs and tumor cells of GC patients.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Animales , Ratones , Antígeno B7-H1 , Butiratos , Interleucina-10/genética , Macrófagos Asociados a Tumores , Leucocitos Mononucleares , Recurrencia Local de Neoplasia , Inmunosupresores
11.
J Inflamm (Lond) ; 20(1): 46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129904

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) induces a dysfunctional immune response, inflammation, autoantibody production, and coagulopathy, which are symptoms that bear resemblance to those of autoimmune diseases, including systemic sclerosis (SSc). METHODS: While there is a single case report suggesting an association between COVID-19 and SSc, the effects of COVID-19 on SSc are not yet fully understood. Human embryonic kidney 293 (HEK293) cells were transfected with the SARS-CoV-2 spike protein gene, in the presence of TGF-ß. The expression levels of fibrosis-related proteins were measured via Western blotting. A bleomycin (BLM)-induced SSc mouse model was employed, wherein mice were injected with the gene encoding the SARS-CoV-2 spike protein and the ACE2 receptor. The levels of fibrosis, autoantibodies, thrombotic factors, and inflammatory cytokines in tissues and serum were analyzed. RESULTS: In vitro, the expression levels of fibrosis marker proteins were elevated in the spike protein group compared to the control group. In vivo, the skin thickness of SSc mice increased following exposure to the SARS-CoV-2 spike protein. Furthermore, the levels of autoantibodies and thrombotic factors, such as anti-phospholipid antibodies (APLA), were significantly increased in the presence of the protein. Flow cytometry analysis revealed increased expression of the proinflammatory cytokine IL-17 in the skin, lungs, and blood. Moreover, tissue fibrosis and levels of inflammatory cytokines in skin and lung tissues were markedly escalated in SSc mice subjected to the protein. CONCLUSION: COVID-19 may accelerate the development and progression of SSc by intensifying fibrosis through the upregulation of inflammation, autoantibody production, and thrombosis.

12.
Cell Commun Signal ; 21(1): 320, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946227

RESUMEN

BACKGROUND: Interleukin (IL)-10-producing B (B10) cells are generated in response to signals from the tumor microenvironment and promote tumor growth by interacting with B10 cells. We investigated the distributions of immune cells in peripheral blood and tumor tissue samples from patients with gastric cancer (GC). METHODS: Patients with GC who underwent radical gastrectomy in Seoul St. Mary's Hospital between August 2020 and May 2021 were enrolled in this study. Forty-two samples of peripheral blood were collected, and a pair of gastric mucosal samples (normal and cancerous mucosa; did not influence tumor diagnosis or staging) was collected from each patient after surgery. B10 cells in peripheral blood and cancer mucosa samples were investigated by flow cytometry and immunofluorescence. AGS cells, gastric cancer cell line, were cultured with IL-10 and measured cell death and cytokine secretion. Also, AGS cells were co-cultured with CD19 + B cells and measured cytokine secretion. RESULTS: The population of B10 cells was significantly larger in the blood of patients with GC compared with controls. In confocal images of gastric mucosal tissues, cancerous mucosa contained more B10 cells than normal mucosa. The population of B10 cells in cancerous mucosa increased with cancer stage. When AGS cells were cultured under cell-death conditions, cellular necrosis was significantly decreased, and proliferation was increased, for 1 day after IL-10 stimulation. Tumor necrosis factor (TNF)-α, IL-8, IL-1ß, and vascular endothelial growth factor secretion by cancer cells was significantly increased by coculture of AGS cells with GC-derived CD19+ B cells. CONCLUSIONS: B cells may be one of the populations that promote carcinogenesis by inducing the production of inflammatory mediators, such as IL-10, in GC. Targeting B10 cells activity could improve the outcomes of antitumor immunotherapy. Video Abstract.


Asunto(s)
Interleucina-10 , Neoplasias Gástricas , Humanos , Factor A de Crecimiento Endotelial Vascular , Linfocitos B , Antígenos CD19 , Factor de Necrosis Tumoral alfa/metabolismo , Microambiente Tumoral
13.
Immunol Lett ; 263: 87-96, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37722567

RESUMEN

Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Fosfolipasa D , Ratones , Animales , Osteoclastos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Fosfolipasa D/genética , Fosfolipasa D/farmacología , Fosfolipasa D/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Diferenciación Celular , Citocinas/genética , Células Th17/patología
14.
Exp Mol Med ; 55(8): 1713-1719, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524866

RESUMEN

Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.


Asunto(s)
Queloide , Humanos , Ratones , Animales , Queloide/etiología , Queloide/tratamiento farmacológico , Queloide/patología , Xenoinjertos , Calidad de Vida , Ratones Endogámicos NOD , Ratones SCID , Fibroblastos/patología , Modelos Animales de Enfermedad
15.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496081

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Asunto(s)
Artritis Reumatoide , Faecalibacterium prausnitzii , Ratones , Animales , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Grasos Volátiles/metabolismo , Modelos Animales de Enfermedad , Butiratos , Artritis Reumatoide/tratamiento farmacológico
16.
Cell Commun Signal ; 21(1): 135, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316856

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation of the exocrine gland. An imbalance of gut microbiota has been linked to SS. However, the molecular mechanism is unclear. We investigated the effects of Lactobacillus acidophilus (L. acidophilus) and propionate on the development and progression of SS in mouse model. METHODS: We compared the gut microbiomes of young and old mice. We administered L. acidophilus and propionate up to 24 weeks. The saliva flow rate and the histopathology of the salivary glands were investigated, and the effects of propionate on the STIM1-STING signaling pathway were evaluated in vitro. RESULTS: Lactobacillaceae and Lactobacillus were decreased in aged mice. SS symptoms were ameliorated by L. acidophilus. The abundance of propionate-producing bacterial was increased by L. acidophilus. Propionate ameliorated the development and progression of SS by inhibiting the STIM1-STING signaling pathway. CONCLUSIONS: The findings suggest that Lactobacillus acidophilus and propionate have therapeutic potential for SS. Video Abstract.


Asunto(s)
Síndrome de Sjögren , Animales , Ratones , Lactobacillus acidophilus , Propionatos , Inflamación , Transducción de Señal
17.
PLoS One ; 18(6): e0286456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352198

RESUMEN

Osteoarthritis (OA), the most common form of arthritis, is characterized by pain and cartilage damage; it usually exhibits gradual development. However, the pathogenesis of OA remains unclear. This study was undertaken to improve the understanding and treatment of OA. OA was induced in 7-week-old Wistar rats by intra-articular injection of monosodium iodoacetate (MIA); subsequently, the rats underwent oral administration of Bifidobacterium longum BORI (B. BORI). The effects of B. BORI were examined in chondrocytes and an MIA-induced OA rat model. In the rats, B. BORI-mediated effects on pain severity, cartilage destruction, and inflammation were recorded. Additional effects on mRNA and cytokine secretion were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Paw withdrawal threshold, paw withdrawal latency, and weight-bearing assessments revealed that pain severity in MIA-induced OA rats was decreased after B. BORI treatment. Histopathology analyses and three-dimensional surface renderings of rat femurs from micro-computed tomography images revealed cartilage protection and cartilage loss inhibition effects in B. BORI-treated OA rats. Immunohistochemical analyses of inflammatory cytokines and catabolic markers (e.g., matrix metalloproteinases) showed that the expression levels of both were reduced in tissue from B. BORI-treated OA rats. Furthermore, B. BORI treatment decreased the expression levels of the inflammatory cytokine monocyte chemoattractant protein-1 and inflammatory gene factors (e.g., inflammatory cell death markers) in chondrocytes. The findings indicate that oral administration of B. BORI has therapeutic potential in terms of reducing pain, progression, and inflammation in OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratas , Animales , Condrocitos/metabolismo , Ratas Wistar , Microtomografía por Rayos X , Cartílago Articular/patología , Osteoartritis/metabolismo , Dolor/patología , Inflamación/patología , Ácido Yodoacético/efectos adversos , Citocinas/metabolismo
18.
Front Immunol ; 14: 1096565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143677

RESUMEN

Introduction: Dysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis. Method: Using 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes. Results: As a result, axSpA patients were found to have decreased α-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 µg/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis. Discussion: We found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis.


Asunto(s)
Espondiloartritis Axial , Microbioma Gastrointestinal , Espondilitis Anquilosante , Ratones , Animales , Interleucina-10 , Interleucina-17 , Disbiosis/microbiología , Butiratos/metabolismo , ARN Ribosómico 16S/genética , Leucocitos Mononucleares/metabolismo , Microbioma Gastrointestinal/genética
19.
Front Immunol ; 14: 1138743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153541

RESUMEN

Introduction: Although tumor, node, metastasis (TNM) staging has been used for prognostic assessment of gastric cancer (GC), the prognosis may vary among patients with the same TNM stage. Recently, the TNM-Immune (TNM-I) classification staging system has been used for prognostic assessment of colorectal cancer based on intra-tumor T-cell status, which is a superior prognostic factor compared with the American Joint Committee on Cancer staging manual. However, an immunoscoring system with prognostic significance for GC has not been established. Method: Here, we evaluated immune phenotypes in cancer and normal tissues, then examined correlations between tissues and peripheral blood. GC patients who underwent gastrectomy at Seoul St. Mary's Hospital between February 2000 and May 2021 were included. We collected 43 peripheral blood samples preoperatively and a pair of gastric mucosal samples postoperatively, including normal and cancer mucosa, which did not influence tumor diagnosis and staging. Tissue microarray samples of GC were collected from 136 patients during surgery. We investigated correlations of immune phenotypes between tissues and peripheral blood using immunofluorescence imaging and flow cytometry, respectively. GC mucosa exhibited an increased number of CD4+ T cells, as well as increased expression levels of immunosuppressive markers (e.g., programmed death-ligand-1 [PD-L1], cytotoxic T lymphocyte antigen-4 [CTLA-4], and interleukin-10), in CD4+ T cells and non-T cells. Result: The expression levels of immunosuppressive markers were significantly increased in cancer tissues and peripheral blood mononuclear cells. In gastric mucosal tissues and peripheral blood of GC patients, similar immunosuppression phenotypes were observed, including increased numbers of PD-L1- and CTLA-4-positive T cells. Discussion: Therefore, peripheral blood analysis may be an important tool for prognostic assessment of GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Pronóstico , Neoplasias Gástricas/patología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4 , Leucocitos Mononucleares/metabolismo
20.
Cell Commun Signal ; 21(1): 98, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143079

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.


Asunto(s)
Artritis Experimental , Enfermedades Autoinmunes , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Colágeno , Inflamación , Leucina Zippers , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...