Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Nat Genet ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977853

RESUMEN

Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide association studies (GWAS). REGLE can uncover features not captured by existing expert-defined features and enables the creation of accurate disease-specific polygenic risk scores (PRSs) in datasets with very few labeled data. We apply REGLE to perform GWAS on respiratory and circulatory HDCD-spirograms measuring lung function and photoplethysmograms measuring blood volume changes. REGLE replicates known loci while identifying others not previously detected. REGLE are predictive of overall survival, and PRSs constructed from REGLE loci improve disease prediction across multiple biobanks. Overall, REGLE contain clinically relevant information beyond that captured by existing expert-defined features, leading to improved genetic discovery and disease prediction.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38935874

RESUMEN

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

3.
HGG Adv ; 5(3): 100319, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38872309

RESUMEN

Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However, comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes. Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait testing have been solved, the strategy to select traits has been overlooked. In this study, we conducted multi-trait GWAS on approximately 20,000 combinations of 72 traits using an omnibus test as implemented in the Joint Analysis of Summary Statistics. We assessed which genetic features of the sets of traits analyzed were associated with an increased detection of variants compared with univariate screening. Several features of the set of traits, including the heritability, the number of traits, and the genetic correlation, drive the multi-trait test gain. Using these features jointly in predictive models captures a large fraction of the power gain of the multi-trait test (Pearson's r between the observed and predicted gain equals 0.43, p < 1.6 × 10-60). Applying an alternative multi-trait approach (Multi-Trait Analysis of GWAS), we identified similar features of interest, but with an overall 70% lower number of new associations. Finally, selecting sets based on our data-driven models systematically outperformed the common strategy of selecting clinically similar traits. This work provides a unique picture of the determinant of multi-trait GWAS statistical power and outlines practical strategies for multi-trait testing.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Modelos Genéticos , Carácter Cuantitativo Heredable
4.
RMD Open ; 10(2)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886003

RESUMEN

OBJECTIVE: To compare longitudinal changes in spirometric measures between patients with rheumatoid arthritis (RA) and non-RA comparators. METHODS: We analysed longitudinal data from two prospective cohorts: the UK Biobank and COPDGene. Spirometry was conducted at baseline and a second visit after 5-7 years. RA was identified based on self-report and disease-modifying antirheumatic drug use; non-RA comparators reported neither. The primary outcomes were annual changes in the per cent-predicted forced expiratory volume in 1 s (FEV1%) and per cent predicted forced vital capacity (FVC%). Statistical comparisons were performed using multivariable linear regression. The analysis was stratified based on baseline smoking status and the presence of obstructive pattern (FEV1/FVC <0.7). RESULTS: Among participants who underwent baseline and follow-up spirometry, we identified 233 patients with RA and 37 735 non-RA comparators. Among never-smoking participants without an obstructive pattern, RA was significantly associated with more FEV1% decline (ß=-0.49, p=0.04). However, in ever smokers with ≥10 pack-years, those with RA exhibited significantly less FEV1% decline than non-RA comparators (ß=0.50, p=0.02). This difference was more pronounced among those with an obstructive pattern at baseline (ß=1.12, p=0.01). Results were similar for FEV1/FVC decline. No difference was observed in the annual FVC% change in RA versus non-RA. CONCLUSIONS: Smokers with RA, especially those with baseline obstructive spirometric patterns, experienced lower FEV1% and FEV1/FVC decline than non-RA comparators. Conversely, never smokers with RA had more FEV1% decline than non-RA comparators. Future studies should investigate potential treatments and the pathogenesis of obstructive lung diseases in smokers with RA.


Asunto(s)
Artritis Reumatoide , Fumar , Espirometría , Humanos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Estudios Prospectivos , Fumar/efectos adversos , Fumar/epidemiología , Anciano , Volumen Espiratorio Forzado , Capacidad Vital , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/etiología , Adulto , Reino Unido/epidemiología
5.
Nat Aging ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834882

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

6.
medRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826461

RESUMEN

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

8.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798504

RESUMEN

Introduction: Mucus pathology plays a critical role in airway diseases like chronic bronchitis (CB) and chronic obstructive pulmonary disease (COPD). Up to 32% of community-living persons report clinical manifestations of mucus pathology (e.g., cough and sputum production). However, airway mucus pathology has not been systematically studied in community-living individuals. In this study, we will use an objective, reproducible assessment of mucus pathology on chest computed tomography (CT) scans from community-living individuals participating in the Coronary Artery Risk Development in Young Adults (CARDIA) and Framingham Heart Study (FHS) cohorts. Methods and analysis: We will determine the clinical relevance of CT-based mucus plugs and modifiable and genetic risk and protective factors associated with this process. We will evaluate the associations of mucus plugs with lung function, respiratory symptoms, and chronic bronchitis and examine whether 5-yr. persistent CT-based mucus plugs are associated with the decline in FEV1 and future COPD. Also, we will assess whether modifiable factors, including air pollution and marijuana smoking are associated with increased odds of CT-based mucus plugs and whether cardiorespiratory fitness is related in an opposing manner. Finally, we will determine genetic resilience/susceptibility to mucus pathology. We will use CT data from the FHS and CARDIA cohorts and genome-wide sequencing data from the TOPMed initiative to identify common and rare variants associated with CT-based mucus plugging. Ethics and Dissemination: The Mass General Brigham Institutional Review Board approved the study. Findings will be disseminated through peer-reviewed journals and at professional conferences.

9.
Genes (Basel) ; 15(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790194

RESUMEN

Depression is heritable, differs by sex, and has environmental risk factors such as cigarette smoking. However, the effect of single nucleotide polymorphisms (SNPs) on depression through cigarette smoking and the role of sex is unclear. In order to examine the association of SNPs with depression and smoking in the UK Biobank with replication in the COPDGene study, we used counterfactual-based mediation analysis to test the indirect or mediated effect of SNPs on broad depression through the log of pack-years of cigarette smoking, adjusting for age, sex, current smoking status, and genetic ancestry (via principal components). In secondary analyses, we adjusted for age, sex, current smoking status, genetic ancestry (via principal components), income, education, and living status (urban vs. rural). In addition, we examined sex-stratified mediation models and sex-moderated mediation models. For both analyses, we adjusted for age, current smoking status, and genetic ancestry (via principal components). In the UK Biobank, rs6424532 [LOC105378800] had a statistically significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 4.0 × 10-4) among all participants and a marginally significant indirect effect among females (p = 0.02) and males (p = 4.0 × 10-3). Moreover, rs10501696 [GRM5] had a marginally significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 0.01) among all participants and a significant indirect effect among females (p = 2.2 × 10-3). In the secondary analyses, the sex-moderated indirect effect was marginally significant for rs10501696 [GRM5] on broad depression through the log of pack-years of cigarette smoking (p = 0.01). In the COPDGene study, the effect of an SNP (rs10501696) in GRM5 on depressive symptoms and medication was mediated by log of pack-years (p = 0.02); however, no SNPs had a sex-moderated mediated effect on depressive symptoms. In the UK Biobank, we found SNPs in two genes [LOC105378800, GRM5] with an indirect effect on broad depression through the log of pack-years of cigarette smoking. In addition, the indirect effect for GRM5 on broad depression through smoking may be moderated by sex. These results suggest that genetic regions associated with broad depression may be mediated by cigarette smoking and this relationship may be moderated by sex.


Asunto(s)
Depresión , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Femenino , Depresión/genética , Depresión/epidemiología , Persona de Mediana Edad , Anciano , Fumar/genética , Factores Sexuales , Predisposición Genética a la Enfermedad , Reino Unido/epidemiología , Fumar Cigarrillos/genética , Fumar Cigarrillos/efectos adversos , Factores de Riesgo
10.
N Engl J Med ; 390(22): 2083-2097, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767252

RESUMEN

BACKGROUND: Adjustment for race is discouraged in lung-function testing, but the implications of adopting race-neutral equations have not been comprehensively quantified. METHODS: We obtained longitudinal data from 369,077 participants in the National Health and Nutrition Examination Survey, U.K. Biobank, the Multi-Ethnic Study of Atherosclerosis, and the Organ Procurement and Transplantation Network. Using these data, we compared the race-based 2012 Global Lung Function Initiative (GLI-2012) equations with race-neutral equations introduced in 2022 (GLI-Global). Evaluated outcomes included national projections of clinical, occupational, and financial reclassifications; individual lung-allocation scores for transplantation priority; and concordance statistics (C statistics) for clinical prediction tasks. RESULTS: Among the 249 million persons in the United States between 6 and 79 years of age who are able to produce high-quality spirometric results, the use of GLI-Global equations may reclassify ventilatory impairment for 12.5 million persons, medical impairment ratings for 8.16 million, occupational eligibility for 2.28 million, grading of chronic obstructive pulmonary disease for 2.05 million, and military disability compensation for 413,000. These potential changes differed according to race; for example, classifications of nonobstructive ventilatory impairment may change dramatically, increasing 141% (95% confidence interval [CI], 113 to 169) among Black persons and decreasing 69% (95% CI, 63 to 74) among White persons. Annual disability payments may increase by more than $1 billion among Black veterans and decrease by $0.5 billion among White veterans. GLI-2012 and GLI-Global equations had similar discriminative accuracy with regard to respiratory symptoms, health care utilization, new-onset disease, death from any cause, death related to respiratory disease, and death among persons on a transplant waiting list, with differences in C statistics ranging from -0.008 to 0.011. CONCLUSIONS: The use of race-based and race-neutral equations generated similarly accurate predictions of respiratory outcomes but assigned different disease classifications, occupational eligibility, and disability compensation for millions of persons, with effects diverging according to race. (Funded by the National Heart Lung and Blood Institute and the National Institute of Environmental Health Sciences.).


Asunto(s)
Pruebas de Función Respiratoria , Insuficiencia Respiratoria , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/economía , Enfermedades Pulmonares/etnología , Enfermedades Pulmonares/terapia , Trasplante de Pulmón/estadística & datos numéricos , Encuestas Nutricionales/estadística & datos numéricos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/economía , Enfermedad Pulmonar Obstructiva Crónica/etnología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Grupos Raciales , Pruebas de Función Respiratoria/clasificación , Pruebas de Función Respiratoria/economía , Pruebas de Función Respiratoria/normas , Espirometría , Estados Unidos/epidemiología , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/economía , Insuficiencia Respiratoria/etnología , Insuficiencia Respiratoria/terapia , Negro o Afroamericano/estadística & datos numéricos , Blanco/estadística & datos numéricos , Evaluación de la Discapacidad , Ayuda a Lisiados de Guerra/clasificación , Ayuda a Lisiados de Guerra/economía , Ayuda a Lisiados de Guerra/estadística & datos numéricos , Personas con Discapacidad/clasificación , Personas con Discapacidad/estadística & datos numéricos , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/economía , Enfermedades Profesionales/etnología , Financiación Gubernamental/economía , Financiación Gubernamental/estadística & datos numéricos
11.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714703

RESUMEN

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Asunto(s)
Aberraciones Cromosómicas , Hematopoyesis Clonal , Mosaicismo , Humanos , Hematopoyesis Clonal/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Janus Quinasa 2/genética , Telomerasa/genética , Telomerasa/metabolismo , Pérdida de Heterocigocidad , Estudios Transversales , Mutación , Persona de Mediana Edad , Células Madre Hematopoyéticas/metabolismo , Polimorfismo de Nucleótido Simple , Anciano
12.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811034

RESUMEN

COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Pulmón , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Pulmón/fisiopatología , Factores de Riesgo , Animales , Marcadores Genéticos , Pronóstico
13.
medRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38699360

RESUMEN

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

15.
Hum Mol Genet ; 33(13): 1164-1175, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38569558

RESUMEN

While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).


Asunto(s)
Regiones no Traducidas 3' , Estudio de Asociación del Genoma Completo , Pulmón , Poliadenilación , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Humanos , Regiones no Traducidas 3'/genética , Poliadenilación/genética , Pulmón/metabolismo , Masculino , Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/genética , Femenino , Regulación de la Expresión Génica/genética
16.
Brain Behav Immun Health ; 38: 100762, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38590762

RESUMEN

Traumatic Brain Injury (TBI) is a major cause of severe disability and death, resulting in significant health care and economic burden. Poloxamer 188, a synthetic tri-block copolymer approved by the FDA, has been studied for its potential effects on traumatic brain injury (TBI). The neuroprotective abilities of P188 have attracted significant attention. This systematic review aims to compile evidence of P188's effect on the treatment of TBI. A comprehensive literature search was conducted using PubMed, SCOPUS, and Google Scholar databases, which yielded 20 articles that satisfied the inclusion criteria. These articles have shown direct protective effects of P188 on brain tissue following TBI, including restitution of the increase cell membrane permeability, attenuation of neuronal necrosis and apoptosis, improvement of mitochondrial viability, reduction in axonal disruption, and restoration of the blood brain barrier. In animals, P188 has been shown to improve sensorimotor functions, as well as spatial learning and memory.

17.
medRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38585732

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS: The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.

18.
medRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585762

RESUMEN

Background: Recent studies showed that Black patients more often have falsely normal oxygen saturation on pulse oximetry compared to White patients. However, whether the racial differences in occult hypoxemia are mediated by other clinical differences is unknown. Methods: We conducted a retrospective case-control study utilizing two large ICU databases (eICU and MIMIC-IV). We defined occult hypoxemia as oxygen saturation on pulse oximetry within 92-98% despite oxygen saturation on arterial blood gas below 90%. We assessed associations of commonly measured clinical factors with occult hypoxemia using multivariable logistic regression and conducted mediation analysis of the racial effect. Results: Among 24,641 patients, there were 1,855 occult hypoxemia cases and 23,786 controls. In both datasets, Black patients were more likely to have occult hypoxemia (unadjusted odds ratio 1.66 [95%-CI: 1.41-1.95] in eICU and 2.00 [95%-CI: 1.22-3.14] in MIMIC-IV). In multivariable models, higher respiratory rate, PaCO2 and creatinine as well as lower hemoglobin were associated with increased odds of occult hypoxemia. Differences in the commonly measured clinical markers accounted for 9.2% and 44.4% of the racial effect on occult hypoxemia in eICU and MIMIC-IV, respectively. Conclusion: Clinical differences, in addition to skin tone, might mediate some of the racial differences in occult hypoxemia.

19.
Hepatology ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557779

RESUMEN

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

20.
medRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464285

RESUMEN

Background: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...