Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38798402

RESUMEN

Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.

2.
Adv Biosyst ; 4(7): e1900248, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32558394

RESUMEN

Many studies utilizing animal models have revealed the genetic and pharmacogenetic modulators of the rate of organismal aging. However, finding routes for healthy aging during extended life remains one of the largest questions. With regards to an antiaging reagent, it has been shown that natural phytochemical syringaresinol (SYR) delays cellular senescence by activating sirtuin1 (SIRT1). Here, it is found that SYR treatment results in metabolic changes similar to those observed during dietary restriction (DR). The DR mimetic effects are mediated by FoxO3a-dependent SIRT1 activation and insulin/insuline growth factor-1 signaling modulation. The direct binding of SYR-FoxO3a is identified and this could partially explain the DR-like phenotype. The report gives a clue as to how the longevity gene involves the DR pathway and suggests that natural phytochemicals applied as a geroprotector mimics DR effects.


Asunto(s)
Materiales Biomiméticos/farmacología , Restricción Calórica , Proteína Forkhead Box O3/metabolismo , Fitoquímicos/farmacología , Animales , Reprogramación Celular , Ratones , Sirtuina 1/metabolismo
3.
Sci Rep ; 9(1): 18613, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819086

RESUMEN

Recent advances in CRISPR/Cas gene editing technology have significantly expanded the possibilities and accelerated the pace of creating genetically engineered animal models. However, CRISPR/Cas-based strategies designed to precisely edit the genome can often yield unintended outcomes. Here, we report the use of zygotic CRISPR/Cas9 injections to generate a knock-in GFP reporter mouse at the Gdf11 locus. Phenotypic and genomic characterization of founder animals from these injections revealed a subset that contained the correct targeting event and exhibited GFP expression that, within the hematopoietic system, was restricted predominantly to lymphoid cells. Yet, in another subset of founder mice, we detected aberrant integration events at the target site that dramatically and inaccurately shifted hematopoietic GFP expression from the lymphoid to the myeloid lineage. Additionally, we recovered multiple Gdf11 deletion alleles that modified the C-terminus of the GDF11 protein. When bred to homozygosity, most of these alleles recapitulated skeletal phenotypes reported previously for Gdf11 knockout mice, suggesting that these represent null alleles. However, we also recovered one Gdf11 deletion allele that encodes a novel GDF11 variant protein ("GDF11-WE") predicted to contain two additional amino acids (tryptophan (W) and glutamic acid (E)) at the C-terminus of the mature ligand. Unlike the other Gdf11 deletion alleles recovered in this study, homozygosity for the Gdf11WE allele did not phenocopy Gdf11 knockout skeletal phenotypes. Further investigation using in vivo and in vitro approaches demonstrated that GDF11-WE retains substantial physiological function, indicating that GDF11 can tolerate at least some modifications of its C-terminus and providing unexpected insights into its biochemical activities. Altogether, our study confirms that one-step zygotic injections of CRISPR/Cas gene editing complexes provide a quick and powerful tool to generate gene-modified mouse models. Moreover, our findings underscore the critical importance of thorough characterization and validation of any modified alleles generated by CRISPR, as unintended on-target effects that fail to be detected by simple PCR screening can produce substantially altered phenotypic readouts.


Asunto(s)
Alelos , Proteínas Morfogenéticas Óseas/genética , Sistemas CRISPR-Cas , Eliminación de Gen , Edición Génica , Factores de Diferenciación de Crecimiento/genética , Animales , Femenino , Genes Reporteros , Ingeniería Genética , Genoma , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homocigoto , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células Mieloides/metabolismo , Fenotipo , Dominios Proteicos , Triptófano/metabolismo
4.
BMC Biol ; 15(1): 19, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28257634

RESUMEN

BACKGROUND: Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor ß (TGFß) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. RESULTS: Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. CONCLUSIONS: These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Factores de Diferenciación de Crecimiento/química , Miostatina/química , Miostatina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Folistatina/metabolismo , Genes Reporteros , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Inyecciones Intravenosas , Ligandos , Luciferasas/metabolismo , Ratones , Modelos Moleculares , Mioblastos/metabolismo , Miocardio/metabolismo , Miostatina/antagonistas & inhibidores , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Alineación de Secuencia , Transducción de Señal , Proteínas Smad/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
5.
Circ Res ; 118(1): 29-37, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26489925

RESUMEN

RATIONALE: Growth differentiation factor 11 (GDF11) and GDF8 are members of the transforming growth factor-ß superfamily sharing 89% protein sequence homology. We have previously shown that circulating GDF11 levels decrease with age in mice. However, a recent study by Egerman et al reported that GDF11/8 levels increase with age in mouse serum. OBJECTIVE: Here, we clarify the direction of change of circulating GDF11/8 levels with age and investigate the effects of GDF11 administration on the murine heart. METHODS AND RESULTS: We validated our previous finding that circulating levels of GDF11/8 decline with age in mice, rats, horses, and sheep. Furthermore, we showed by Western analysis that the apparent age-dependent increase in GDF11 levels, as reported by Egerman et al, is attributable to cross-reactivity of the anti-GDF11 antibody with immunoglobulin, which is known to increase with age. GDF11 administration in mice rapidly activated SMAD2 and SMAD3 signaling in myocardium in vivo and decreased cardiac mass in both young (2-month-old) and old (22-month-old) mice in a dose-dependent manner after only 9 days. CONCLUSIONS: Our study confirms an age-dependent decline in serum GDF11/8 levels in multiple mammalian species and that exogenous GDF11 rapidly activates SMAD signaling and reduces cardiomyocyte size. Unraveling the molecular basis for the age-dependent decline in GDF11/8 could yield insight into age-dependent cardiac pathologies.


Asunto(s)
Envejecimiento/sangre , Proteínas Morfogenéticas Óseas/sangre , Factores de Diferenciación de Crecimiento/sangre , Miostatina/sangre , Animales , Biomarcadores/sangre , Caballos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ovinos
6.
PLoS One ; 10(2): e0115339, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706717

RESUMEN

SIRT1 exerts protective effects against endothelial cells dysfunction, inflammation and atherosclerosis, indicating an important role on myocardial infarction (MI) pathogenesis. Nonetheless, the effects of SIRT1 variants on MI risk remain poorly understood. Here we aimed to investigate the influence of SIRT1 polymorphisms on individual susceptibility to MI. Genotyping of three tagSNPs (rs7069102, rs3818292 and rs4746720) in SIRT1 gene was performed in a Chinese Han population, consisting of 287 MI cases and 654 control subjects. In a logistic regression analysis, we found that G allele of rs7069102 had increased MI risk with odds ratio (OR) of 1.57 [95% confidence interval (CI) = 1.15-2.16, Bonferroni corrected P (Pc) = 0.015] after adjustment for conventional risk factors compared to C allele. Similarly, the combined CG/GG genotypes was associated with the increased MI risk (OR = 1.64, 95% CI = 1.14-2.35, Pc = 0.021) compared to the CC genotype. Further stratified analysis revealed a more significant association with MI risk among younger subjects (≤ 55 years old). Consistent with these results, the haplotype rs7069102G-rs3818292A-rs4746720T containing the rs7069102 G allele was also associated with the increased MI risk (OR = 1.41, 95% CI = 1.09-1.84, Pc = 0.040). However, we did not detect any association of rs3818292 and rs4746720 with MI risk. Our study provides the first evidence that the tagSNP rs7069102 and haplotype rs7069102G-rs3818292A-rs4746720T in SIRT1 gene confer susceptibility to MI in the Chinese Han population.


Asunto(s)
Predisposición Genética a la Enfermedad , Infarto del Miocardio/genética , Polimorfismo de Nucleótido Simple , Sirtuina 1/genética , Anciano , Alelos , Pueblo Asiatico/genética , China , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad
7.
Oncotarget ; 6(1): 43-55, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25415049

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is a master regulator of hypoxic response and has been a prime therapeutic target for ischemia/reperfusion (I/R)-derived myocardial dysfunction and tissue damage. There is also increasing evidence that HIF-1 plays a central role in regulating aging, both through interactions with key longevity factors including Sirtuins and mTOR, as well as by directly promoting longevity in Caenorhabditis elegans.We investigated a novel function and the underlying mechanism of syringaresinol, a lignan compound, in modulation of HIF-1 and protection against cellular damage and death in a cardiomyocyte model of I/R injury. Syringaresinol caused destabilization of HIF-1α following H/R and then protected against hypoxia/reoxygenation (H/R)-induced cellular damage, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Knock-down of FOXO3 by specific siRNAs completely abolished the ability of syringaresinol to inhibit HIF-1 stabilization and apoptosis caused by H/R. Syringaresinol stimulated the nuclear localization and activity of FOXO3 leading to increased expression of antioxidant genes and decreased levels of reactive oxygen species (ROS) following H/R. Our results provide a new mechanistic insight into a functional role of syringaresinol against H/R-induced cardiomyocyte injury and death. The degradation of HIF-1α through activation of FOXO3 is a potential therapeutic strategy for ischemia-related diseases.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Furanos/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lignanos/química , Miocitos Cardíacos/citología , Animales , Antioxidantes/metabolismo , Apoptosis , Caspasa 3/metabolismo , Muerte Celular , Hipoxia de la Célula , Línea Celular , Supervivencia Celular , Citometría de Flujo , Proteína Forkhead Box O3 , Microscopía Fluorescente , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/metabolismo , Oxígeno/química , ARN Interferente Pequeño/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Regulación hacia Arriba
8.
Curr Opin Genet Dev ; 26: 105-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25151201

RESUMEN

Accumulation of DNA damage and mutations is considered an important causal factor in age-related diseases. Genetic defects in DNA repair cause premature onset and accelerated progression of age-related diseases and a shorter life span in humans and mice, providing strong evidence that genome maintenance is a bona fide longevity assurance pathway. However, the contribution of genome maintenance to human longevity itself remains to be established. Here, we review the results of human genetics studies, including genome wide association studies, and attempted to catalogue all genes involved in major DNA repair pathways that harbor variants associated with longevity. We hope to provide a comprehensive review to facilitate future endeavors aimed at uncovering the functional role of genome maintenance genes in human longevity.


Asunto(s)
Envejecimiento/genética , Enfermedad/genética , Estudio de Asociación del Genoma Completo , Longevidad/genética , Daño del ADN , Reparación del ADN/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple
9.
Mutat Res ; 761: 15-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24447667

RESUMEN

miRNAs are small non-coding RNAs that play an important role in numerous physiological processes. Common single nucleotide polymorphisms (SNPs) in pre-miRNAs may change their property through altering miRNAs expression and/or maturation, resulting in diverse functional consequences. To date, the role of genetic variants in pre-miRNAs on coronary artery disease (CAD) risk remains poorly understood. Here we aimed to evaluate the influence of three common SNPs in pre-miRNAs (miR-146a rs2910164 G>C, miR-196a2 rs11614913 C>T, miR-499 rs3746444 T>C) on individual susceptibility to CAD in a Chinese population of 295 CAD patients and 283 controls. Genotyping was performed using polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) method. In a logistic regression analysis, we detected an association of rs2910164 in pre-miR-146a with the CAD risk; compared with the GG homozygotes, the GC heterozygotes [odds ratio (OR)=1.89, 95% confidence interval (CI)=1.06-3.36, P=0.029] and the CC homozygotes (OR=1.83, 95% CI=1.01-3.32, P=0.046) genotype were statistically significantly associated with the increased risk for CADs. As we used further genotype association models, we found a similar trend of the association in recessive model (OR=1.86, 95% CI=1.09-3.19, P=0.023). We also found that the genotypes of miR-146a rs2910164 were associated with its mature miRNA expression by analyzing 23 PBMC samples from CAD patients. Individuals carrying rs11614913 GC or CC genotypes showed 3.2-fold higher expression compared to GG genotype carriers (P<0.05). We observed no association of the other two SNPs in miR-196a2 (rs11614913) and miR-499 (rs3746444) with the CAD incidence. Our data provide the first evidence that the miR-146a rs2910164 polymorphism is associated with increased risk of CAD in Chinese Han population, which may be through influencing the expression levels of the miRNA.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , MicroARNs/genética , Anciano , Pueblo Asiatico/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Riesgo
10.
Aging (Albany NY) ; 5(3): 174-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23525956

RESUMEN

Increased SIRT1 expression exerts beneficial effects in transgenic animal models, ameliorating the onset and progression of aging-related disease phenotypes in various organs including the heart. The potential beneficial effects of SIRT1 have made SIRT1 a prime therapeutic target for age-related diseases and considerable efforts led to the identification of small molecule activator of SIRT1 protein. Thus far, however, a small molecule activator of SIRT1 gene expression has not been reported. Here, we report that syringaresinol, isolated from Panax ginseng berry pulp, is an activator of SIRT1 gene expression. Using human umbilical endothelial cells (HUVECs), we show that syringaresinol treatment induced binding of FOXO3 to the SIRT1 promoter in a sequence-specific manner, leading to induction of SIRT1 expression. Increased SIRT1 expression in HUVECs by syringaresinol treatment delayed cellular senescence and improved various markers of endothelial functions in a FOXO3 dependent manner. Collectively, these findings bring to light a new transcription activator of SIRT1 that may have therapeutic potential.


Asunto(s)
Factores de Transcripción Forkhead/genética , Furanos/farmacología , Lignanos/farmacología , Sirtuina 1/genética , Células Cultivadas , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Regiones Promotoras Genéticas/efectos de los fármacos , Sirtuina 1/metabolismo
11.
J Gerontol A Biol Sci Med Sci ; 67(4): 376-83, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156437

RESUMEN

Age is a major risk factor for many human diseases. Extremely long-lived individuals, such as centenarians, have managed to ward off age-related diseases and serve as human models to search for the genetic factors that influence longevity. The discovery of evolutionarily conserved pathways with major impact on life span in animal models has provided tantalizing opportunities to test the relevance of these pathways for human longevity. Here we specifically focus on the insulin/insulin-like growth factor-1 signaling as a prime candidate pathway. Coupled with the rapid advances in ultra high-throughput sequencing technologies, it is now feasible to comprehensively analyze all possible sequence variants in candidate genes segregating with a longevity phenotype and to investigate the functional consequences of the associated variants. A better understanding of the functional genes that affect healthy longevity in humans may lead to a rational basis for intervention strategies that can delay or prevent age-related diseases.


Asunto(s)
Longevidad/genética , Transducción de Señal/genética , Anciano de 80 o más Años , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Estudios de Asociación Genética , Variación Genética , Humanos , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones
12.
Proc Natl Acad Sci U S A ; 107 Suppl 1: 1710-7, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19915151

RESUMEN

Telomere length in humans is emerging as a biomarker of aging because its shortening is associated with aging-related diseases and early mortality. However, genetic mechanisms responsible for these associations are not known. Here, in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls, we studied the inheritance and maintenance of telomere length and variations in two major genes associated with telomerase enzyme activity, hTERT and hTERC. We demonstrated that centenarians and their offspring maintain longer telomeres compared with controls with advancing age and that longer telomeres are associated with protection from age-related diseases, better cognitive function, and lipid profiles of healthy aging. Sequence analysis of hTERT and hTERC showed overrepresentation of synonymous and intronic mutations among centenarians relative to controls. Moreover, we identified a common hTERT haplotype that is associated with both exceptional longevity and longer telomere length. Thus, variations in human telomerase gene that are associated with better maintenance of telomere length may confer healthy aging and exceptional longevity in humans.


Asunto(s)
Variación Genética , Longevidad/genética , ARN/genética , Telomerasa/genética , Telómero , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Haplotipos , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad
13.
PLoS One ; 3(6): e2346, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545656

RESUMEN

Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.


Asunto(s)
Envejecimiento Prematuro/patología , Apoptosis , Homeostasis , Hígado/patología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Envejecimiento Prematuro/genética , Animales , Daño del ADN , Metabolismo Energético , Femenino , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 105(9): 3438-42, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18316725

RESUMEN

Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan.


Asunto(s)
Longevidad/genética , Mutación , Receptor IGF Tipo 1/genética , Anciano de 80 o más Años , Tamaño Corporal , Estudios de Cohortes , Análisis Mutacional de ADN , Salud de la Familia , Heterocigoto , Humanos , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/genética , Judíos/genética , Linfocitos , Receptor IGF Tipo 1/metabolismo , Factores Sexuales
15.
Pharmacogenet Genomics ; 17(6): 403-15, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17502832

RESUMEN

OBJECTIVES: Multidrug resistance protein 2 (MRP2, ABCC2) plays an important role in the biliary clearance of a wide variety of endogenous and exogenous toxic compounds. Therefore, polymorphisms and mutations in the MRP2 gene may affect individual susceptibility to hepatotoxic reactions. METHODS: Associations between genetic variations of MRP2 and toxic hepatitis were investigated using integrated population genetic analysis and functional molecular studies. RESULTS: Using a gene scanning method, 12 polymorphisms and mutations were found in the MRP2 gene in a Korean population. Individual variation at these sites was analyzed by conventional DNA screening in 110 control subjects and 94 patients with toxic hepatitis induced mostly by herbal remedies. When haplotypes were identified, over 85% of haploid genes belonged to the five most common haplotypes. Among these, a haplotype containing the g.-1774delG polymorphism showed a strong association with cholestatic or mixed-type hepatitis, and a haplotype containing the g.-1549G>A, g.-24C>T, c.334-49C>T, and c.3972C>T variations was associated with hepatocellular-type hepatitis. A comprehensive functional study of these sites revealed that genetic variations in the promoter of this gene are primarily responsible for the susceptibility to toxic liver injuries. The g.-1774delG variation and the combined variation of g.-1549G>A and g.-24C>T decreased MRP2 promoter activity by 36 and 39%, respectively. In addition, the promoter carrying the g.-1774delG allele showed a defect in the bile acid-induced induction of promoter activity. CONCLUSIONS: These results suggest that genetic variations of MRP2 are an important predisposing factor for herbal-induced or drug-induced toxic liver injuries.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Adulto , Anciano , Secuencia de Bases , Estudios de Casos y Controles , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Cartilla de ADN/genética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Variación Genética , Haplotipos , Humanos , Corea (Geográfico) , Masculino , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Mutación , Farmacogenética , Polimorfismo Genético , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Transfección
16.
Hum Mol Genet ; 12(18): 2321-32, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12952861

RESUMEN

Aberrant membrane transport caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with a wide spectrum of respiratory and digestive diseases as well as cystic fibrosis. Using a gene scanning method, we found 11 polymorphisms and mutations of the CFTR gene in the Korean population. Individual variants at these sites were analyzed by conventional DNA screening in 117 control and 75 patients having bronchiectasis or chronic pancreatitis. In a haplotype determination based on a Bayesian algorithm, 15 haplotypes were assembled in the 192 individuals tested. Several haplotypes, especially with Q1352H, IVS8 T5, and E217G, were found to have disease associations in a case-control study. Notably, a common polymorphism of M470V appears to affect the intensity of the disease association. Among the two haplotypes having IVS8 T5, the T5-V470 haplotype showed higher disease association than the T5-M470 haplotype. In addition, a Q1352H mutation found in a V470 background showed the strongest disease association. The physiological significances of the identified mutations were rigorously analyzed. Non-synonymous E217G and Q1352H mutations in the M470 background caused a 60-80% reduction in CFTR-dependent Cl(-) currents and HCO3(-) -transport activities. Surprisingly, the additional M470V polymorphic variant with the Q1352H mutation completely abolished CFTR-dependent anion transport activities. These findings provide the first evidence on the importance of CFTR mutations in the Asian population. Importantly, the results also reveal that interactions between multiple genetic variants in cis affect the final function of the gene products.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Haplotipos , Mutación , Enfermedades Pancreáticas/genética , Sistema Respiratorio/fisiopatología , Alelos , Animales , Bicarbonatos/metabolismo , Bronquiectasia/genética , Células CHO , Estudios de Casos y Controles , Canales de Cloruro , Cloruros/metabolismo , Cricetinae , Cricetulus , Análisis Mutacional de ADN , Evolución Molecular , Frecuencia de los Genes , Variación Genética , Humanos , Transporte Iónico , Corea (Geográfico) , Repeticiones de Microsatélite , Mutagénesis Sitio-Dirigida , Pancreatitis/genética , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA