Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(48): 9379-9388, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37681714

RESUMEN

Probing the transient microstructure of soft matter far from equilibrium is an ongoing challenge to understanding material processing. In this work, we investigate inverse worm-like micelles undergoing large amplitude oscillatory shear using time-resolved dielectric spectroscopy. By controlling the Weissenburg number, we compare the non-linear microstructure response of branched and unbranched worm-like micelles and isolate distinct elastic effects that manifest near flow reversal. We validate our dielectric measurements with small angle neutron scattering and employ sequence of physical processes to disentangle the elastic and viscous contributions of the stress.

2.
ACS Macro Lett ; 11(4): 575-579, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575339

RESUMEN

Wormlike micelles (WLMs) are ubiquitous viscoelastic modifiers that share properties with polymer solutions. While their macroscopic rheology is well-understood, their microscopic dynamics remain difficult to measure because they span a large range of time and length scales. In this work, we demonstrate the use of X-ray photon correlation spectroscopy to interrogate the segmental dynamics of inverse WLM solutions swollen with a rubidium chloride solution. We observe a diffusive scaling of the dynamics and extract a temperature-dependent diffusion coefficient, which we associate with the thermal interactions of the slow segmental dynamics near entanglement points. We probe this relaxation process across the unbranched to branched topological transition and find no microstructural evidence of branch formation in the slow mode. Instead, we observe that the dynamics become more homogeneous and prominent as the temperature is reduced and water content increases.


Asunto(s)
Micelas , Tensoactivos , Reología , Análisis Espectral , Tensoactivos/química , Rayos X
3.
J Phys Chem B ; 125(39): 11067-11077, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34550697

RESUMEN

The rheology of wormlike micelle (WLM) solutions is tunable by engineering the micellar structure and topology. While much is known about how microscopic properties influence the rheological characteristics, questions remain regarding the quantification of fast relaxation processes, including Rouse and rotational modes. These fast processes are challenging to access using mechanical spectroscopy as bending modes dominate high-frequency mechanical measurements. In this work, we demonstrate the use of dielectric spectroscopy (DES) to directly interrogate these fast relaxation modes in solutions containing reverse WLMs. These consist of lecithin solutions in n-decane swollen with water. We develop an equivalent circuit model that separates the fast spectral features from the low-frequency processes and show that this relaxation feature is consistent with a combination of high-frequency Rouse and rotational modes. Further, we show that the low-frequency response is not determined by polymer dynamics alone. These findings demonstrate the potential of DES measurements to describe WLM behavior and pave the way toward in situ measurements under steady and transient shear flow.

4.
J Colloid Interface Sci ; 525: 115-118, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29689415

RESUMEN

Our recent experiments have demonstrated that when a bubble rises through a nanofluid (a liquid containing dispersed nanoparticles) in a vertical tube, a nanofluidic film with several particle layers is formed between the gas bubble and the glass tube wall, which significantly changes the bubble velocity due to the nanoparticle layering phenomenon in the film. We calculated the structural nanofilm viscosity as a function of the number of particle layers confined in it and found that the film viscosity increases rather steeply when the film contains only one or two particle layers. The nanofilm viscosity was found to be several times higher than the bulk viscosity of the fluid. Consequently, the Bretherton equation cannot accurately predict the rate of the rise of a slow-moving long bubble in a vertical tube in a nanofluid because it is valid only for very thick films and uses the bulk viscosity of the fluid. However, in this brief note, we demonstrate that the Bretherton equation can indeed be used for predicting the rate of the rise of a long single bubble through a vertical tube filled with a nanofluid by simply replacing the bulk viscosity with the proper structural nanofilm viscosity of the fluid.

5.
J Colloid Interface Sci ; 516: 312-316, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408118

RESUMEN

When a single bubble moves at a very low capillary number (10-7) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...