RESUMEN
Phosphonic acid (PA) self-assembled molecules have recently emerged as efficient hole-extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self-assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely "non-fused ring dipodal phosphonic acids" (NFR-DPAs), featuring simple and malleable non-fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR-DPA with linear (C2h symmetry) and brominated backbone exhibits favorable face-on orientation and enhanced work function modification capability compared to its angular (C2v symmetry) and non-brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier-free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52â V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA-based HELs for high-performance OSCs.
RESUMEN
Efficient energy-level alignment is crucial for achieving high performance in organic electronic devices. Because the electronic structure of an organic semiconductor is significantly influenced by its molecular orientation, comprehensively understanding the molecular orientation and electronic structure of the organic layer is essential. In this study, we investigated the interface between a 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) hole injection layer and a zinc-phthalocyanine (ZnPc) p-type organic semiconductor. To determine the energy-level alignment and molecular orientation, we conducted in situ ultraviolet and X-ray photoelectron spectroscopies, as well as angle-resolved X-ray absorption spectroscopy. We found that the HAT-CN molecules were oriented relatively face-on (40°) in the thin (5 nm) layer, whereas they were oriented relatively edge-on (62°) in the thick (100 nm) layer. By contrast, ZnPc orientation was not significantly altered by the underlying HAT-CN orientation. The highest occupied molecular orbital (HOMO) level of ZnPc was closer to the Fermi level on the 100 nm thick HAT-CN layer than on the 5 nm thick HAT-CN layer because of the higher work function. Consequently, a considerably low energy gap between the lowest unoccupied molecular orbital level of HAT-CN and the HOMO level of ZnPc was formed in the 100 nm thick HAT-CN case. This may improve the hole injection ability of the anode system, which can be utilized in various electronic devices.
RESUMEN
Carrier dynamics affects photocatalytic systems, but direct and real-time observations in an element-specific and energy-level-specific manner are challenging. In this study, we demonstrate that the dynamics of photo-generated holes in metal oxides can be directly probed by using femtosecond X-ray absorption spectroscopy at an X-ray free-electron laser. We identify the energy level and life time of holes with a long life time (230 pico-seconds) in nano-crystal materials. We also observe that trapped holes show an energy distribution in the bandgap region with a formation time of 0.3 pico-seconds and a decay time of 8.0 pico-seconds at room temperature. We corroborate the dynamics of the electrons by using X-ray absorption spectroscopy at the metal L-edges in a consistent explanation with that of the holes.
RESUMEN
The interfacial properties of organolead halide perovskite solar cells (PSCs) affect the exciton and charge-transport dynamics significantly. Thus, proper modification of the interfaces between perovskite and charge-transport layers is an efficient method to increase the power conversion efficiency (PCE) of PSCs. In this work, we explore the effect of a nonionic surfactant, that is, Triton X-100 (TX) additive, in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer. The electronic structure of TX-modified PEDOT:PSS is investigated with ultraviolet/X-ray photoelectron spectroscopy and X-ray absorption spectroscopy with various TX concentrations. The surface of the TX-modified PEDOT:PSS layer showed high TX content, and thus the semimetallic properties of PEDOT:PSS were suppressed conspicuously by its insulating nature. With the TX-modified PEDOT:PSS, the PCE of methylammonium lead iodide (MAPbI3) PSCs increased significantly. To elucidate the origin of the improved device performance, the electrical properties and photoluminescence were investigated comprehensively. Consequently, it was found that the TX additive inhibits interface recombination between PEDOT:PSS and MAPbI3, which is caused by the suppression of semimetallic properties of the PEDOT:PSS surface. Hence, we fabricated flexible PSCs successfully using a graphene electrode and TX-modified PEDOT:PSS.
RESUMEN
The interfacial electronic structures of a bilayer of fullerene (C60) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V2O5) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V2O5 was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V2O5 than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C60/ZnPc on V2O5 and ITO.
Asunto(s)
Fulerenos/química , Indoles/química , Compuestos Organometálicos/química , Compuestos de Vanadio/química , Isoindoles , Espectroscopía de Fotoelectrones , Especificidad por Sustrato , Compuestos de Estaño/química , Compuestos de ZincRESUMEN
In organic photovoltaics (OPVs), determining the energy-level alignment of a donor and an acceptor is particularly important since the interfacial energy gap between the highest occupied molecular orbital (HOMO) level of a donor and the lowest unoccupied molecular orbital (LUMO) level of an acceptor (E-E) gives the theoretical maximum value of the open-circuit voltage (VOC). To increase the E-E, non-fullerene acceptors, which have a lower electron affinity (EA) than C60, are receiving increasing attention. In this study, we investigated the energy-level alignment at the interface of a boron chloride subphthalocyanine (SubPc) donor and a halogenated SubPc (Cl6SubPc) acceptor using soft X-ray spectroscopy techniques. The estimated E-E of Cl6SubPc/SubPc was 1.95 eV, which was significantly higher than that of 1.51 eV found at the interface of C60/SubPc. This increased E-E was the origin of the enhanced VOC in OPVs. Additionally, we studied the molecular orientation of Cl6SubPc using angle-dependent X-ray absorption spectroscopy. The highly disordered Cl6SubPc molecules result in low carrier mobility, which contributes to the lower short-circuit current density of the Cl6SubPc acceptor OPVs than the C60 acceptor OPVs.
RESUMEN
Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed.
RESUMEN
We studied the effect of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum (Alq(3)) with density functional theory, which has been adopted as an exciton blocking layer (EBL) in organic photovoltaic cells (OPVCs). The substitution of electron withdrawing nitrogen on the phenoxide moiety of Alq(3) lowers the highest molecular orbital (HOMO) level, thus photogenerated excitons can be effectively blocked in OPVC. Additional substitution of methyl on the pyridine moiety makes that Alq(3) has a smaller electron reorganization energy, which results in higher electron mobility with keeping HOMO level almost intact. Therefore, nitrogen and methyl simultaneous substitution shows high performance both in exciton blocking and electron mobility. This is the origins of the short circuit current enhancement in OPVC with 4-hydroxy-8-methyl-1,5-naphthyridine aluminum chelate (Alq(3) with the substitution of both nitrogen and methyl group) EBL.
RESUMEN
The interface formation between a metal and MoO(3) was examined. We carried out in situ ultraviolet and x-ray photoemission spectroscopy with step-by-step deposition of MoO(3) on clean Au and Al substrates. The MoO(3) induces huge interface dipoles, which significantly increase the work functions of Au and Al surfaces. This is the main origin of the carrier injection improvement in organic devices. In addition, interface states are observed at the initial stages of MoO(3) deposition on both Au and Al. The interface states are very close to the Fermi level, assisting the charge transport from the metal electrode. This explains that thick MoO(3) layers provide good charge transport when adopted in organic devices.