Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 704: 149596, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430697

RESUMEN

PHD finger protein 7 (Phf7) is a member of the PHF family proteins, which plays important roles in spermiogenesis. Phf7 is expressed in the adult testes and its deficiency causes male infertility. In this study, we tried to find the causal relationship between Phf7 deficiency and reduced growth retardation which were found in null knock-out (Phf7-/-) mice. Phf7-/- mice were born normally in the Mendelian ratio. However, the Phf7-/- males showed decreased body weight gain, bone mineral density, and bone mineral content compared to those in wild-type (WT) mice. Histological analysis for tibia revealed increased number of osteoclast cells in Phf7-/- mice compared with that in WT mice. When we analyzed the expressions for marker genes for the initial stage of osteoclastogenesis, such as receptor activator of nuclear factor kappa B (Rank) in tibia, there was no difference in the mRNA levels between Phf7-/- and WT mice. However, the expression of tartrate-resistant acid phosphatase (Trap), a mature stage marker gene, was significantly higher in Phf7-/- mice than in WT mice. In addition, the levels of testosterone and dihydrotestosterone (DHT), more potent and active form of testosterone, were significantly reduced in the testes of Phf7-/- mice compared to those in WT mice. Furthermore, testicular mRNA levels for steroidogenesis marker genes, namely Star, Cyp11a1, Cyp17a1 and 17ß-hsd, were significantly lower in Phf7-/- mice than in WT mice. In conclusion, these results suggest that Phf7 deficiency reduces the production of male sex hormones and thereby impairs associated bone remodeling.


Asunto(s)
Hormonas Testiculares , Animales , Masculino , Ratones , Remodelación Ósea , Osteoclastos/metabolismo , ARN Mensajero/metabolismo , Hormonas Testiculares/metabolismo , Testosterona/metabolismo
2.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181745

RESUMEN

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Asunto(s)
ADN Mitocondrial , Efectores Tipo Activadores de la Transcripción , Animales , Humanos , Ratones , Adenina , Citosina , ADN Mitocondrial/genética , Edición Génica , ARN , Efectores Tipo Activadores de la Transcripción/metabolismo , Ingeniería de Proteínas
3.
Sci Adv ; 8(43): eabk1239, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306352

RESUMEN

Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Animales , Reprogramación Celular/genética , Desmoplaquinas/genética , Pez Cebra , Mamíferos
4.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884616

RESUMEN

Topoisomerase IIIß (Top3ß), the only dual-activity topoisomerase in mammals that can change topology of both DNA and RNA, is known to be associated with neurodevelopment and mental dysfunction in humans. However, there is no report showing clear associations of Top3ß with neuropsychiatric phenotypes in mice. Here, we investigated the effect of Top3ß on neuro-behavior using newly generated Top3ß deficient (Top3ß-/-) mice. We found that Top3ß-/- mice showed decreased anxiety and depression-like behaviors. The lack of Top3ß was also associated with changes in circadian rhythm. In addition, a clear expression of Top3ß was demonstrated in the central nervous system of mice. Positron emission tomography/computed tomography (PET/CT) analysis revealed significantly altered connectivity between many brain regions in Top3ß-/- mice, including the connectivity between the olfactory bulb and the cerebellum, the connectivity between the amygdala and the olfactory bulb, and the connectivity between the globus pallidus and the optic nerve. These connectivity alterations in brain regions are known to be linked to neurodevelopmental as well as psychiatric and behavioral disorders in humans. Therefore, we conclude that Top3ß is essential for normal brain function and behavior in mice and that Top3ß could be an interesting target to study neuropsychiatric disorders in humans.


Asunto(s)
Trastornos de Ansiedad/patología , Conducta Animal , Ritmo Circadiano , Conectoma , ADN-Topoisomerasas de Tipo I/fisiología , Depresión/patología , Animales , Trastornos de Ansiedad/etiología , Depresión/etiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados
5.
J Lipid Res ; 62: 100117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34537202

RESUMEN

Adipose tissue affects metabolic-related diseases because it consists of various cell types involved in fat metabolism and adipokine release. CXC ligand 5 (CXCL5) is a member of the CXC chemokine family and is highly expressed by macrophages in white adipose tissue (WAT). In this study, we generated and investigated the function of CXCL5 in knockout (KO) mice using CRISPR/Cas9. The male KO mice did not show significant phenotype differences in normal conditions. However, proteomic analysis revealed that many proteins involved in fatty acid beta-oxidation and mitochondrial localization were enriched in the inguinal WAT (iWAT) of Cxcl5 KO mice. Cxcl5 KO mice also showed decreased protein and transcript expression of genes associated with thermogenesis, including uncoupling protein 1 (UCP1), a well-known thermogenic gene, and increased expression of genes associated with inflammation. The increase in UCP1 expression in cold conditions was significantly retarded in Cxcl5 KO mice. Finally, we found that CXCL5 treatment increased the expression of transcription factors that mediate Ucp1 expression and Ucp1 itself. Collectively, our data show that Ucp1 expression is induced in adipocytes by CXCL5, which is secreted upon ß-adrenergic stimulation by cold stimulation in M1 macrophages. Our data indicate that CXCL5 plays a crucial role in regulating energy metabolism, particularly upon cold exposure. These results strongly suggest that targeting CXCL5 could be a potential therapeutic strategy for people suffering from disorders affecting energy metabolism.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Quimiocina CXCL5/metabolismo , Macrófagos/metabolismo , Animales , Células Cultivadas , Quimiocina CXCL5/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
6.
Ann Geriatr Med Res ; 24(4): 297-304, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33227845

RESUMEN

BACKGROUND: Sestrin2 (Sesn2) is involved in the maintenance of metabolic homeostasis and aging via modulation of the 5' AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) pathway. METHODS: Wild-type and Sesn2 knockout (KO) mice of the 129/SvJ background were maintained in a pathogen-free authorized facility under a 12-hour dark/light cycle at 20°C-22°C and 50%-60% humidity. Mouse embryonic fibroblasts (MEFs) were prepared from 13.5-day-old embryos derived from Sesn2-KO mice mated with each other. RESULTS: The MEFs from Sesn2-KO mice showed enlarged and flattened morphologies and senescence-associated ß-galactosidase activity, accompanied by an elevated level of reactive oxygen species. These senescence phenotypes recovered following treatment with N-acetyl-cysteine. Notably, the mRNA levels of NADPH oxidase 4 (NOX4) and transforming growth factor (TGF)-ß were markedly increased in Sesn2-KO MEFs. Treatment of Sesn2-KO MEFs with the NOX inhibitor diphenyleneiodonium and the TGF-ß inhibitor SB431542 restored cell growth inhibited by Sesn2-KO. CONCLUSION: Sesn2 attenuates cellular senescence via suppression of TGF-ß- and NOX4-induced reactive oxygen species generation and subsequent inhibition of AMPK.

7.
Int J Med Sci ; 17(6): 815-823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218703

RESUMEN

Importin-11 (Ipo11) is a novel member of the human importin family of transport receptors (karyopherins), which are known to mediate the nucleocytoplasmic transport of protein and RNA cargos. Despite its role in the transport of protein, we found that knockout of Ipo11 nuclear import factor affects normal embryonic development and govern embryo-lethal phenotypes in mice. In this study, we for the first time produced a mouse line containing null mutation in Ipo11 gene utilized by gene trapping. The Ipo11-/- embryos showed an embryonic lethal phenotype. The Ipo11-/- embryos showed a reduced size at embryonic day 10.5 (E10.5) when compared with Ipo11+/+ or Ipo11+/- embryos and died by E11.5. Whereas Ipo11+/- mice were healthy and fertile, and there was no detectable changes in embryonic lethality and phenotype when reviewed. In the X-gal staining with the Ipo11-/- or Ipo11+/- embryos, strong X-gal staining positivity was detected systematically in the whole mount embryos at E10.5, although almost no X-gal positivity was detected at E9.5, indicating that the embryos die soon after the process of Ipo11 expression started. These results indicate that Ipo11 is essential for the normal embryonic development in mice.


Asunto(s)
Desarrollo Embrionario/genética , Carioferinas/genética , Animales , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Carioferinas/antagonistas & inhibidores , Ratones , Ratones Noqueados , Embarazo
8.
Int J Med Sci ; 16(12): 1557-1563, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31839743

RESUMEN

E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.


Asunto(s)
Desarrollo Óseo/genética , Factor de Transcripción E2F3/genética , Desarrollo Embrionario/genética , Músculo Esquelético/crecimiento & desarrollo , Animales , Apoptosis/genética , Peso Corporal/genética , Ciclo Celular/genética , Proliferación Celular/genética , Embrión de Mamíferos , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Fenotipo
9.
Biotechniques ; 59(1): 34-41, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26156782

RESUMEN

The use of secondary or reprogrammable cells in the production of induced pluripotent stem cells (iPSCs) circumvents random infection by various viral particles and random, uncontrollable integrations of the viral genomes into different genomic loci. We have developed a convenient method for repeatedly producing genetically identical secondary fibroblasts via teratoma formation using pre-existing iPSCs. The iPSCs used in this study carried doxycycline (Dox)-inducible transgenes for four transcription factors in their genome. Teratoma-derived primary cells (TOFs) were obtained in a huge amount during the culture of teratomas and showed good ability to form iPSCs similar to that of regular secondary fibroblasts. Immunohistochemistry analysis demonstrated the potential of TOF-derived iPSCs to differentiate into all three germ layers. The gene expression profiles of these TOFs and their iPSCs closely mimicked those of regular embryonic fibroblasts and embryonic stem cells/iPSCs, respectively. The possibility that the iPSCs were derived from a small part of pluripotent cells lurking in the TOF population was precluded by the observation of doxycycline-dependent and PluriSin (a compound selectively eliminating pluripotent cells)- independent formations of iPSCs. Our results showed that the TOFs retained the capability to mediate cellular reprogramming, similar to that of regular secondary fibroblasts.


Asunto(s)
Técnicas de Cultivo de Célula , Técnicas de Reprogramación Celular , Fibroblastos/citología , Teratoma/patología , Animales , Inmunohistoquímica , Células Madre Pluripotentes Inducidas , Ratones SCID , Transgenes
10.
J Korean Med Sci ; 21(5): 891-6, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17043425

RESUMEN

Ras-related, estrogen-regulated, and growth-inhibitory gene (RERG) is a novel gene that was first reported in breast cancer. However, the functions of RERG are largely unknown in other tumor types. In this study, RERG expression was analyzed in hepatocellular carcinomas of human patients using reverse transcriptase PCR analysis. In addition, the possible regulation of RERG expression by histone deacetyltransferases (HDACs) was studied in several cell lines. Interestingly, the expression of RERG gene was increased in hepatocellular carcinoma (HCC) of male patients (57.9%) but decreased in HCC of females (87.5%) comparison with paired peri-tumoral tissues. Moreover, RERG gene expression was increased in murine hepatoma Hepa1-6 cells, human breast tumor MDA-MB-231 cells, and mouse normal fibroblast NIH3T3 cells after treated by HDAC inhibitor, trichostatin A. Our results suggest that RERG may function in a gender-dependent manner in hepatic tumorigenesis and that the expression of this gene may be regulated by an HDAC-related signaling pathway.


Asunto(s)
Estrógenos/farmacología , Regulación Neoplásica de la Expresión Génica , Genes ras , Inhibidores de Crecimiento/genética , Histona Desacetilasas/fisiología , Neoplasias Hepáticas/genética , Animales , Proliferación Celular , Receptor alfa de Estrógeno/análisis , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores Sexuales , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA