Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 59(4): 2605-2619, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35107803

RESUMEN

TMEM184B is a putative seven-pass membrane protein that promotes axon degeneration after injury. TMEM184B mutation causes aberrant neuromuscular architecture and sensory and motor behavioral defects in mice. The mechanism through which TMEM184B causes neuromuscular defects is unknown. We employed Drosophila melanogaster to investigate the function of the closely related gene, Tmep (CG12004), at the neuromuscular junction. We show that Tmep is required for full adult viability and efficient larval locomotion. Tmep mutant larvae have a reduced body contraction rate compared to controls, with stronger deficits in females. In recordings from body wall muscles, Tmep mutants show substantial hyperexcitability, with many postsynaptic potentials fired in response to a single stimulation, consistent with a role for Tmep in restraining synaptic excitability. Additional branches and satellite boutons at Tmep mutant neuromuscular junctions are consistent with an activity-dependent synaptic overgrowth. Tmep is expressed in endosomes and synaptic vesicles within motor neurons, suggesting a possible role in synaptic membrane trafficking. Using RNAi knockdown, we show that Tmep is required in motor neurons for proper larval locomotion and excitability, and that its reduction increases levels of presynaptic calcium. Locomotor defects can be rescued by presynaptic knockdown of endoplasmic reticulum calcium channels or by reducing evoked release probability, further suggesting that excess synaptic activity drives behavioral deficiencies. Our work establishes a critical function for Tmep in the regulation of synaptic transmission and locomotor behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Larva/metabolismo , Locomoción/genética , Ratones , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología
2.
Mol Metab ; 58: 101443, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066159

RESUMEN

OBJECTIVE: Cholecystokinin (CCK) plays a critical role in regulating eating and metabolism. Previous studies have mapped a multi-synapse neural pathway from the vagus nerve to the central nucleus of the amygdala (CEA) that mediates the anorexigenic effect of CCK. However, the neural circuit downstream of the CEA is still unknown due to the complexity of the neurons in the CEA. Here we sought to determine this circuit using a novel approach. METHODS: It has been established that a specific population of CEA neurons, marked by protein kinase C-delta (PKC-δ), mediates the anorexigenic effect of CCK by inhibiting other CEA inhibitory neurons. Taking advantage of this circuit, we dissected the neural circuit using a unique approach based on the idea that neurons downstream of the CEA should be disinhibited by CEAPKC-δ+ neurons while being activated by CCK. We also used optogenetic assisted electrophysiology circuit mapping and in vivo chemogenetic manipulation methods to determine the circuit structure and function. RESULTS: We found that neurons in the parasubthalamic nucleus (PSTh) are activated by the activation of CEAPKC-δ+ neurons and by the peripheral administration of CCK. We demonstrated that CEAPKC-δ+ neurons inhibit the PSTh-projecting CEA neurons; accordingly, the PSTh neurons can be disynaptically disinhibited or "activated" by CEAPKC-δ+ neurons. Finally, we showed that chemogenetic silencing of the PSTh neurons effectively attenuates the eating suppression induced by CCK. CONCLUSIONS: Our results identified a disynaptic CEA-PSTh neural circuit that mediates the anorexigenic effect of CCK and thus provide an important neural mechanism of how CCK suppresses eating.


Asunto(s)
Núcleo Amigdalino Central , Colecistoquinina , Animales , Núcleo Amigdalino Central/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Ratones , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Optogenética
3.
Pain ; 163(5): e642-e653, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34629389

RESUMEN

ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.


Asunto(s)
Calcio , Prurito , Animales , Calcio/metabolismo , Femenino , Ganglios Espinales/metabolismo , Humanos , Interleucinas/efectos adversos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Ratones , Dolor/metabolismo , Prurito/metabolismo
4.
Nat Commun ; 10(1): 2769, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235690

RESUMEN

Loss of appetite or anorexia associated with inflammation impairs quality of life and increases morbidity in many diseases. However, the exact neural mechanism that mediates inflammation-associated anorexia is still poorly understood. Here we identified a population of neurons, marked by the expression of protein kinase C-delta, in the oval region of the bed nucleus of the stria terminalis (BNST), which are activated by various inflammatory signals. Silencing of these neurons attenuates the anorexia caused by these inflammatory signals. Our results demonstrate that these neurons mediate bidirectional control of general feeding behaviors. These neurons inhibit the lateral hypothalamus-projecting neurons in the ventrolateral part of BNST to regulate feeding, receive inputs from the canonical feeding regions of arcuate nucleus and parabrachial nucleus. Our data therefore define a BNST microcircuit that might coordinate canonical feeding centers to regulate food intake, which could offer therapeutic targets for feeding-related diseases such as anorexia and obesity.


Asunto(s)
Anorexia/fisiopatología , Conducta Alimentaria/fisiología , Inflamación/fisiopatología , Neuronas/fisiología , Núcleos Septales/fisiología , Animales , Anorexia/etiología , Anorexia/prevención & control , Núcleo Arqueado del Hipotálamo/fisiología , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Femenino , Humanos , Inflamación/complicaciones , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Obesidad/etiología , Obesidad/fisiopatología , Núcleos Parabraquiales/fisiología , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Núcleos Septales/citología , Técnicas Estereotáxicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...