Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 55(12): 2586-2595, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38036737

RESUMEN

Base editors are powerful tools for making precise single-nucleotide changes in the genome. However, they can lead to unintended insertions and deletions at the target sites, which is a significant limitation for clinical applications. In this study, we aimed to eliminate unwanted indels at the target sites caused by various evolved base editors. Accordingly, we applied dead Cas9 instead of nickase Cas9 in the base editors to induce accurate substitutions without indels. Additionally, we tested the use of chromatin-modulating peptides in the base editors to improve nucleotide conversion efficiency. We found that using both dead Cas9 and chromatin-modulating peptides in base editing improved the nucleotide substitution efficiency without unintended indel mutations at the desired target sites in human cell lines and mouse primary myoblasts. Furthermore, the proposed scheme had fewer off-target effects than conventional base editors at the DNA level. These results indicate that the suggested approach is promising for the development of more accurate and safer base editing techniques for use in clinical applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Ratones , Animales , Edición Génica/métodos , Mutación INDEL , Cromatina , Nucleótidos , Péptidos
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762659

RESUMEN

Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify ßPix (Arhgef7), the guanine nucleotide exchange factor for Rac1 GTPase, as a regulator of axonal regeneration. After sciatic nerve injury in mice, the expression levels of ßPix increase significantly in nerve segments containing regenerating axons. In regrowing axons, ßPix is localized in the peripheral domain of the growth cone. Using ßPix neuronal isoform knockout (NIKO) mice in which the neuronal isoforms of ßPix are specifically removed, we demonstrate that ßPix promotes neurite outgrowth in cultured dorsal root ganglion neurons and in vivo axon regeneration after sciatic nerve crush injury. Activation of cJun and STAT3 in the cell bodies is not affected in ßPix NIKO mice, supporting the local action of ßPix in regenerating axons. Finally, inhibiting Src, a kinase previously identified as an activator of the ßPix neuronal isoform, causes axon outgrowth defects in vitro, like those found in the ßPix NIKO neurons. Altogether, these data indicate that ßPix plays an important role in axonal regrowth during peripheral nerve regeneration.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Animales , Ratones , Regeneración Nerviosa , Factores de Intercambio de Guanina Nucleótido Rho , Neuronas , Conos de Crecimiento , Ratones Noqueados
3.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
4.
Nat Commun ; 12(1): 1955, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782410

RESUMEN

p62/SQSTM1 is known to act as a key mediator in the selective autophagy of protein aggregates, or aggrephagy, by steering ubiquitinated protein aggregates towards the autophagy pathway. Here, we use a yeast two-hybrid screen to identify the prefoldin-like chaperone UXT as an interacting protein of p62. We show that UXT can bind to protein aggregates as well as the LB domain of p62, and, possibly by forming an oligomer, increase p62 clustering for its efficient targeting to protein aggregates, thereby promoting the formation of the p62 body and clearance of its cargo via autophagy. We also find that ectopic expression of human UXT delays SOD1(A4V)-induced degeneration of motor neurons in a Xenopus model system, and that specific disruption of the interaction between UXT and p62 suppresses UXT-mediated protection. Together, these results indicate that UXT functions as an autophagy adaptor of p62-dependent aggrephagy. Furthermore, our study illustrates a cooperative relationship between molecular chaperones and the aggrephagy machinery that efficiently removes misfolded protein aggregates.


Asunto(s)
Autofagia/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Agregado de Proteínas , Proteína Sequestosoma-1/genética , Superóxido Dismutasa-1/genética , Animales , Autofagia/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Leupeptinas/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/metabolismo , Transgenes , Xenopus laevis , Proteína Fluorescente Roja
5.
Mol Brain ; 14(1): 31, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579325

RESUMEN

Axon regeneration in the central nervous system is inefficient. However, the neurons in the peripheral nervous system display robust regeneration after injury, indicating that axonal regeneration is differentially controlled under various conditions. To identify those molecules regulating axon regeneration, comparative analysis from dorsal root ganglion neurons at embryonic or adult stages is utilized, which reveals that PDK1 is functions as a negative regulator of axon regeneration. PDK1 is downregulated in embryonic neurons after axotomy. In contrast, sciatic nerve axotomy upregulated PDK1 at protein levels from adult mice. The knockdown of PDK1 or the chemical inhibition of PDK1 promotes axon regeneration in vitro and in vivo. Here we present PDK1 as a new player to negatively regulate axon regeneration and as a potential target in the development of therapeutic applications.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Axones/enzimología , Axones/fisiología , Regeneración Nerviosa/fisiología , Canales Catiónicos TRPP/metabolismo , Animales , Axones/efectos de los fármacos , Axotomía , Regulación hacia Abajo/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Indazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Regeneración Nerviosa/efectos de los fármacos , Pirimidinas/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Nervio Ciático/patología , Regulación hacia Arriba/efectos de los fármacos
6.
Exp Mol Med ; 53(1): 1-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446881

RESUMEN

Axon regeneration is orchestrated by many genes that are differentially expressed in response to injury. Through a comparative analysis of gene expression profiling, injury-responsive genes that are potential targets for understanding the mechanisms underlying regeneration have been revealed. As the efficiency of axon regeneration in both the peripheral and central nervous systems can be manipulated, we suggest that identifying regeneration-associated genes is a promising approach for developing therapeutic applications in vivo. Here, we review the possible roles of stem cell marker- or stemness-related genes in axon regeneration to gain a better understanding of the regeneration mechanism and to identify targets that can enhance regenerative capacity.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa , Células-Madre Neurales/metabolismo , Animales , Axones/fisiología , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
7.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418850

RESUMEN

Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro. Here, we collate the key experimental models that revealed the important mechanisms regulating axon regeneration and degeneration in different systems. We also discuss the advantages of experimenting with the rodent model, considering the application of these findings in understanding human diseases and for developing therapeutic methods.


Asunto(s)
Axones/metabolismo , Modelos Teóricos , Animales , Proteínas del Citoesqueleto/metabolismo , Humanos , Regeneración Nerviosa , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/citología , Neuronas/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/fisiología
8.
FEBS J ; 288(16): 4786-4797, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33248003

RESUMEN

Axons are vulnerable to injury, potentially leading to degeneration or neuronal death. While neurons in the central nervous system fail to regenerate, neurons in the peripheral nervous system are known to regenerate. Since it has been shown that injury-response signal transduction is mediated by gene expression changes, expression profiling is a useful tool to understand the molecular mechanisms of regeneration. Axon regeneration is regulated by injury-responsive genes induced in both neurons and their surrounding non-neuronal cells. Thus, an experimental setup for the comparative analysis between regenerative and nonregenerative conditions is essential to identify ideal targets for the promotion of regeneration-associated genes and to understand the mechanisms of axon regeneration. Here, we review the original research that shows the key factors regulating axon regeneration, in particular by using comparative gene expression profiling in diverse systems.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/genética , Animales , Perfilación de la Expresión Génica , Humanos , Neuronas/metabolismo , Transducción de Señal/genética
9.
Mol Neurobiol ; 58(2): 750-760, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33011858

RESUMEN

Neurons are vulnerable to injury, and failure to activate self-protective systems after injury leads to neuronal death. However, sensory neurons in dorsal root ganglions (DRGs) mostly survive and regenerate their axons. To understand the mechanisms of the neuronal injury response, we analyzed the injury-responsive transcriptome and found that Stc2 is immediately upregulated after axotomy. Stc2 is required for axon regeneration in vivo and in vitro, indicating that Stc2 is a neuronal factor regulating axonal injury response. The application of the secreted stanniocalcin 2 to injured DRG neurons promotes regeneration. Stc2 thus represents a potential secretory protein with a feedback function regulating regeneration. Finally, the in vivo gene delivery of STC2 increases regenerative growth after injury in peripheral nerves in mice. These results suggest that Stc2 is an injury-responsive gene required for axon regeneration and a potential target for developing therapeutic applications.


Asunto(s)
Axones/fisiología , Técnicas de Transferencia de Gen , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Regeneración Nerviosa/genética , Nervio Ciático/fisiología , Animales , Axotomía , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Noqueados , Células Receptoras Sensoriales/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
10.
BMC Biol ; 18(1): 60, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493324

RESUMEN

BACKGROUND: Epithin/PRSS14, a type II transmembrane serine protease, is an emerging target of cancer therapy because of its critical roles in tumor progression and metastasis. In many circumstances, the protease, through its ectodomain shedding, exists as a soluble form and performs its proteolytic functions in extracellular environments increasing cellular invasiveness. The seemingly functional integrity of the soluble form raises the question of why the protease is initially made as a membrane-associated protein. RESULTS: In this report, we show that the epithin/PRSS14 intracellular domain (EICD) can be released from the membrane by the action of signal peptide peptidase-like 2b (SPPL2b) after ectodomain shedding. The EICD preferentially localizes in the nucleus and can enhance migration, invasion, and metastasis of epithelial cancer when heterologously expressed. Unbiased RNA-seq analysis and subsequent antibody arrays showed that EICD could control the gene expression of chemokines involved in cell motility, by increasing their promoter activities. Finally, bioinformatics analysis provided evidence for the clinical significance of the intramembrane proteolysis of epithin/PRSS14 by revealing that the poor survival of estrogen receptor (ER)-negative breast cancer patients with high epithin/PRSS14 expression is further worsened by high levels of SPPL2b. CONCLUSIONS: These results show that ectodomain shedding of epithin/PRSS14 can initiate a unique and synchronized bidirectional signal for cancer metastasis: extracellularly broadening proteolytic modification of the surrounding environment and intracellularly reprogramming the transcriptome for metastatic conversion. Clinically, this study also suggests that the intracellular function of epithin/PRSS14 should be considered for targeting this protease for anti-cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de la Membrana/genética , Proteolisis , Serina Endopeptidasas/genética , Animales , Neoplasias de la Mama/fisiopatología , Movimiento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Serina Endopeptidasas/metabolismo
11.
Methods Mol Biol ; 2143: 41-54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524471

RESUMEN

The molecular players regulating the axon degeneration pathway have been identified using in vitro experimental models. Here, we describe an in vitro assay to assess the axonal fragmentation induced by mechanical injury to axons in cultured mouse embryonic dorsal root ganglion (DRG) neurons. DRG neurons are pseudounipolar and therefore suitable for an assay of axonal degeneration after injury. In addition, the time course of the axonal fragmentation is stereotyped, enabling the identification of reagents that either expedite or impede the degeneration process. With an image-based quantification method, the in vitro degeneration assay can be utilized as a platform supporting high-throughput screens for pharmacological or genetic reagents delaying axon degeneration.


Asunto(s)
Axones/fisiología , Ganglios Espinales/citología , Degeneración Walleriana/fisiopatología , Animales , Axotomía , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Disección/métodos , Ganglios Espinales/embriología , Proteínas Fluorescentes Verdes/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/métodos , Cultivo Primario de Células , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura
12.
Proc Natl Acad Sci U S A ; 117(27): 15955-15966, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554499

RESUMEN

Axon regeneration is regulated by a neuron-intrinsic transcriptional program that is suppressed during development but that can be reactivated following peripheral nerve injury. Here we identify Prom1, which encodes the stem cell marker prominin-1, as a regulator of the axon regeneration program. Prom1 expression is developmentally down-regulated, and the genetic deletion of Prom1 in mice inhibits axon regeneration in dorsal root ganglion (DRG) cultures and in the sciatic nerve, revealing the neuronal role of Prom1 in injury-induced regeneration. Elevating prominin-1 levels in cultured DRG neurons or in mice via adeno-associated virus-mediated gene delivery enhances axon regeneration in vitro and in vivo, allowing outgrowth on an inhibitory substrate. Prom1 overexpression induces the consistent down-regulation of cholesterol metabolism-associated genes and a reduction in cellular cholesterol levels in a Smad pathway-dependent manner, which promotes axonal regrowth. We find that prominin-1 interacts with the type I TGF-ß receptor ALK4, and that they synergistically induce phosphorylation of Smad2. These results suggest that Prom1 and cholesterol metabolism pathways are possible therapeutic targets for the promotion of neural recovery after injury.


Asunto(s)
Antígeno AC133/metabolismo , Axones/metabolismo , Colesterol/metabolismo , Regeneración Nerviosa/fisiología , Transducción de Señal , Células Madre/metabolismo , Antígeno AC133/genética , Receptores de Activinas Tipo I , Animales , Axones/patología , Colesterol/genética , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Nervio Ciático
13.
PLoS One ; 15(5): e0233327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32401784

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0230814.].

14.
PLoS One ; 15(4): e0230814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32251425

RESUMEN

Microtubules are a major cytoskeletal component of neurites, and the regulation of microtubule stability is essential for neurite morphogenesis. ßPix (ARHGEF7) is a guanine nucleotide exchange factor for the small GTPases Rac1 and Cdc42, which modulate the organization of actin filaments and microtubules. ßPix is expressed as alternatively spliced variants, including the ubiquitous isoform ßPix-a and the neuronal isoforms ßPix-b and ßPix-d, but the function of the neuronal isoforms remains unclear. Here, we reveal the novel role of ßPix neuronal isoforms in regulating tubulin acetylation and neurite outgrowth. At DIV4, hippocampal neurons cultured from ßPix neuronal isoform knockout (ßPix-NIKO) mice exhibit defects in neurite morphology and tubulin acetylation, a type of tubulin modification which often labels stable microtubules. Treating ßPix-NIKO neurons with paclitaxel, which stabilizes the microtubules, or reintroducing either neuronal ßPix isoform to the KO neurons overcomes the impairment in neurite morphology and tubulin acetylation, suggesting that neuronal ßPix isoforms may promote microtubule stabilization during neurite development. ßPix-NIKO neurons also exhibit lower phosphorylation levels for Stathmin1, a microtubule-destabilizing protein, at Ser16. Expressing either ßPix neuronal isoform in the ßPix-NIKO neurons restores Stathmin1 phosphorylation levels, with ßPix-d having a greater effect than ßPix-b. Furthermore, we find that the recovery of neurite length and Stathmin1 phosphorylation via ßPix-d expression requires PAK kinase activity. Taken together, our study demonstrates that ßPix-d regulates the phosphorylation of Stathmin1 in a PAK-dependent manner and that neuronal ßPix isoforms promote tubulin acetylation and neurite morphogenesis during neuronal development.


Asunto(s)
Proyección Neuronal/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/fisiología , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Acetilación , Citoesqueleto de Actina/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación/fisiología , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología
15.
J Biol Chem ; 295(20): 7168-7177, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32241917

RESUMEN

Serine protease 14 (Prss14)/epithin is a transmembrane serine protease that plays essential roles in tumor progression and metastasis and therefore is a promising target for managing cancer. Prss14/epithin shedding may underlie its activity in cancer and worsen outcomes; accordingly, a detailed understanding of the molecular mechanisms in Prss14/epithin shedding may inform the design of future cancer therapies. On the basis of our previous observation that an activator of PKC, phorbol 12-myristate 13-acetate (PMA), induces Prss14/epithin shedding, here we further investigated the intracellular signaling pathway involved in this process. While using mitogen-activated protein kinase inhibitors to investigate possible effectors of downstream PKC signaling, we unexpectedly found that an inhibitor of c-Jun N-terminal kinase (JNK), SP600125, induces Prss14/epithin shedding even in the absence of PMA. SP600125-induced shedding, like that stimulated by PMA, was mediated by tumor necrosis factor-α-converting enzyme. In contrast, a JNK activator, anisomycin, partially abolished the effects of SP600125 on Prss14/epithin shedding. Moreover, the results from loss-of-function experiments with specific inhibitors, short hairpin RNA-mediated knockdown, and overexpression of dominant-negative PKCßII variants indicated that PKCßII is a major player in JNK inhibition- and PMA-mediated Prss14/epithin shedding. SP600125 increased phosphorylation of PKCßII and tumor necrosis factor-α-converting enzyme and induced their translocation into the plasma membrane. Finally, in vitro cell invasion experiments and bioinformatics analysis of data in The Cancer Genome Atlas breast cancer database revealed that JNK and PKCßII are important for Prss14/epithin-mediated cancer progression. These results provide important information regarding strategies against tumor metastasis.


Asunto(s)
Antracenos/farmacología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Quinasa C beta/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Serina Endopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa 4/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Proteína Quinasa C beta/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Serina Endopeptidasas/genética , Acetato de Tetradecanoilforbol/farmacología
16.
Front Cell Dev Biol ; 8: 599792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392190

RESUMEN

Calcium ions (Ca2+) play critical roles in neuronal processes, such as signaling pathway activation, transcriptional regulation, and synaptic transmission initiation. Therefore, the regulation of Ca2+ homeostasis is one of the most important processes underlying the basic cellular viability and function of the neuron. Multiple components, including intracellular organelles and plasma membrane Ca2+-ATPase, are involved in neuronal Ca2+ control, and recent studies have focused on investigating the roles of mitochondria in synaptic function. Numerous mitochondrial Ca2+ regulatory proteins have been identified in the past decade, with studies demonstrating the tissue- or cell-type-specific function of each component. The mitochondrial calcium uniporter and its binding subunits are major inner mitochondrial membrane proteins contributing to mitochondrial Ca2+ uptake, whereas the mitochondrial Na+/Ca2+ exchanger (NCLX) and mitochondrial permeability transition pore (mPTP) are well-studied proteins involved in Ca2+ extrusion. The level of cytosolic Ca2+ and the resulting characteristics of synaptic vesicle release properties are controlled via mitochondrial Ca2+ uptake and release at presynaptic sites, while in dendrites, mitochondrial Ca2+ regulation affects synaptic plasticity. During brain aging and the progress of neurodegenerative disease, mitochondrial Ca2+ mishandling has been observed using various techniques, including live imaging of Ca2+ dynamics. Furthermore, Ca2+ dysregulation not only disrupts synaptic transmission but also causes neuronal cell death. Therefore, understanding the detailed pathophysiological mechanisms affecting the recently discovered mitochondrial Ca2+ regulatory machineries will help to identify novel therapeutic targets. Here, we discuss current research into mitochondrial Ca2+ regulatory machineries and how mitochondrial Ca2+ dysregulation contributes to brain aging and neurodegenerative disease.

17.
Neurobiol Dis ; 127: 178-192, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735704

RESUMEN

Following damage to a peripheral nerve, injury signaling pathways converge in the cell body to generate transcriptional changes that support axon regeneration. Here, we demonstrate that dual leucine zipper kinase (DLK), a central regulator of injury responses including axon regeneration and neuronal apoptosis, is required for the induction of the pro-regenerative transcriptional program in response to peripheral nerve injury. Using a sensory neuron-conditional DLK knockout mouse model, we show a time course for the dependency of gene expression changes on the DLK pathway after sciatic nerve injury. Gene ontology analysis reveals that DLK-dependent gene sets are enriched for specific functional annotations such as ion transport and immune response. A series of comparative analyses shows that the DLK-dependent transcriptional program is distinct from that promoted by the importin-dependent retrograde signaling pathway, while it is partially shared between PNS and CNS injury responses. We suggest that DLK-dependency might provide a selective filter for regeneration-associated genes among the injury-responsive transcriptome.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Transducción de Señal/fisiología , Animales , Regulación de la Expresión Génica , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Traumatismos de los Nervios Periféricos/genética
18.
J Comp Neurol ; 526(7): 1195-1208, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29405296

RESUMEN

Nerves are particularly vulnerable to damage due to their unique structure with meter-long axons. In the peripheral nervous system neurons and Schwann cells can activate the injury-response program that directs axons to either regenerate or degenerate after traumatic nerve injury. However, the differences between the genetic programs driving nerve regeneration and degeneration have not yet been described extensively. To understand these differences, in this study we have compared the injury-induced transcriptomic changes between the regenerating proximal segment and the degenerating distal segment of a transected nerve, at different post-injury time points. We analyzed the spatiotemporal dynamics of the mouse transcriptome using a sciatic nerve-injury model by means of RNA sequencing. The results of the differentially regulated genes (DEGs) analysis show that some DEG groups are similarly regulated in both proximal and distal segments, and primarily display a positive correlation. However, some DEG groups are exclusively regulated in either the proximal or the distal segment, suggesting that these DEG groups constitute a genetic network for distinguishing the regenerative and degenerative responses. In addition, our gene ontology analysis revealed an enrichment of particular biological processes in different phases and locations. Thus, our data provide a spatiotemporal profile of the transcriptomes that are differentially regulated in either regenerating or degenerating nerves, in vivo. The specific biological processes enriched in the DEG groups might delineate the injury-responsive program that induces contrasting regenerative and degenerative responses in different nerve segments.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Transcriptoma/fisiología , Animales , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Redes Reguladoras de Genes , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Factores de Tiempo
19.
Biochem Biophys Res Commun ; 490(3): 997-1003, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28666872

RESUMEN

Ectodomain shedding regulates functions of many membrane proteins through the cleavage of their juxtamembrane region mainly by a disintegrin and metalloproteinase family proteinases. Tumor necrosis factor-alpha converting enzyme (TACE) is known to be responsible for phorbol myristate acetate (PMA)-induced shedding of various membrane proteins. How PMA regulates TACE-dependent shedding and how TACE exhibits substrate specificity without proteolysis of other membrane proteins are questionable. Here, we show that TACE can interact with an actin-binding protein, filamin, through 20th filamin repeat. We found that the interaction between TACE and filamin was increased by PMA treatment. In addition, loss of filamin or specific disruption of TACE-filamin interaction inhibited ectodomain shedding of representative TACE substrates, CD44 and amyloid protein precursor. From these data, we suggest that filamin may work as a scaffold that can recruit TACE and its substrates in a PMA-dependent manner to achieve substrate specificity for TACE.


Asunto(s)
Proteína ADAM17/metabolismo , Carcinógenos/metabolismo , Filaminas/metabolismo , Serina Endopeptidasas/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Proteína ADAM17/análisis , Línea Celular Tumoral , Filaminas/análisis , Humanos , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Serina Endopeptidasas/análisis
20.
Mol Cells ; 40(1): 10-16, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28152303

RESUMEN

When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Epigénesis Genética , Humanos , Transducción de Señal , Traumatismos del Sistema Nervioso/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA