Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3114, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210470

RESUMEN

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Asunto(s)
SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 117(44): 27307-27318, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067389

RESUMEN

We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.


Asunto(s)
Anticuerpos/genética , Afinidad de Anticuerpos/genética , Ingeniería Genética/métodos , Afinidad de Anticuerpos/inmunología , Evolución Molecular , Humanos , Mutación INDEL/genética , Región Variable de Inmunoglobulina/genética , Mutagénesis , Mutagénesis Insercional/métodos , Eliminación de Secuencia
3.
Sci Rep ; 8(1): 17545, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510163

RESUMEN

Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.


Asunto(s)
Anticuerpos Monoclonales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hipoglucemiantes , Inhibidores de PCSK9 , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Células CHO , Cricetulus , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Hep G2 , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Macaca fascicularis , Masculino , Ratones , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología
4.
Oncoimmunology ; 6(3): e1280645, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405505

RESUMEN

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.

5.
Anal Chem ; 89(4): 2361-2368, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28194941

RESUMEN

Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and in vivo, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development.


Asunto(s)
Amidas/metabolismo , Anticuerpos Monoclonales/metabolismo , Asparagina/metabolismo , Espectrometría de Masas/métodos , Amidas/química , Anticuerpos Monoclonales/química , Asparagina/química , Catálisis , Medición de Intercambio de Deuterio , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo
6.
Sci Rep ; 6: 36391, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819305

RESUMEN

Affinity panning of large libraries is a powerful tool to identify protein binders. However, panning rounds are followed by the tedious re-screening of the clones obtained to evaluate binders precisely. In a first application of Bead Surface Display (BeSD) we show successful in vitro affinity selections based on flow cytometric analysis that allows fine quantitative discrimination between binders. Subsequent consensus analysis of the resulting sequences enables identification of clones that bind tighter than those arising directly from the experimental selection output. This is demonstrated by evolution of an anti-Fas receptor single-chain variable fragment (scFv) that was improved 98-fold vs the parental clone. Four rounds of quantitative screening by fluorescence-activated cell sorting of an error-prone library based on fine discrimination between binders in BeSD were followed by analysis of 200 full-length output sequences that suggested a new consensus design with a Kd ∼140 pM. This approach shortens the time and effort to obtain high affinity reagents and its cell-free nature transcends limitations inherent in previous in vivo display systems.


Asunto(s)
Proteínas/metabolismo , Anticuerpos de Cadena Única/metabolismo , Técnicas de Visualización de Superficie Celular , Citometría de Flujo , Humanos , Biblioteca de Péptidos , Unión Proteica
7.
Cancer Immunol Res ; 3(9): 1052-62, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25943534

RESUMEN

Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/administración & dosificación , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Unión Competitiva , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Prueba de Cultivo Mixto de Linfocitos , Melanoma/inmunología , Melanoma/patología , Melanoma/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
MAbs ; 1(6): 552-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20068388

RESUMEN

Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/farmacología , Inmunoterapia , Neoplasias/terapia , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Anticuerpos de Cadena Única/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Unión Competitiva , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Ingeniería Genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación
9.
Protein Eng Des Sel ; 21(5): 343-51, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18411227

RESUMEN

The use of random mutagenesis in concert with protein display technologies to rapidly select high affinity antibody variants is an established methodology. In some cases, DNA recombination has been included in the strategy to enable selection of mutations which act cooperatively to improve antibody function. In this study, the impact of L-Shuffling DNA recombination on the eventual outcome of an in vitro affinity maturation has been experimentally determined. Parallel evolution strategies, with and without a recombination step, were carried out and both methods improved the affinity of an anti-Fas single chain variable fragment (scFv). The recombination step resulted in an increased population of affinity-improved variants. Moreover, the most improved variant, with a 22-fold affinity gain, emerged only from the recombination-based approach. An analysis of mutations preferentially selected in the recombined population demonstrated strong cooperative effects when tested in combination with other mutations but small, or even negative, effects on affinity when tested in isolation. These results underline the ability of combinatorial library approaches to explore very large regions of sequence space to find optimal solutions in antibody evolution studies.


Asunto(s)
Anticuerpos/química , ADN/análisis , Mutación , Ingeniería de Proteínas/métodos , Recombinación Genética , Ribosomas/metabolismo , Receptor fas/química , Receptor fas/metabolismo , Clonación Molecular , ADN/metabolismo , Biblioteca de Genes , Variación Genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Biblioteca de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA