Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 998, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147805

RESUMEN

Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.


Asunto(s)
Ritmo Circadiano , Núcleo Dorsal del Rafe , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Serotonina , Triptófano Hidroxilasa , Animales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Núcleo Dorsal del Rafe/metabolismo , Serotonina/metabolismo , Serotonina/biosíntesis , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ratones , Masculino , Afecto/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Depresión/metabolismo
2.
Sci Rep ; 14(1): 11439, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769416

RESUMEN

Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.


Asunto(s)
Conducta Social , Animales , Ratones , Masculino , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Conducta Animal/fisiología , Ratones Endogámicos C57BL
3.
Nat Commun ; 15(1): 635, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245509

RESUMEN

Recording neuronal activity using multiple electrodes has been widely used to understand the functional mechanisms of the brain. Increasing the number of electrodes allows us to decode more variety of functionalities. However, handling massive amounts of multichannel electrophysiological data is still challenging due to the limited hardware resources and unavoidable thermal tissue damage. Here, we present machine learning (ML)-based reconstruction of high-frequency neuronal spikes from subsampled low-frequency band signals. Inspired by the equivalence between high-frequency restoration and super-resolution in image processing, we applied a transformer ML model to neuronal data recorded from both in vitro cultures and in vivo male mouse brains. Even with the x8 downsampled datasets, our trained model reasonably estimated high-frequency information of spiking activity, including spike timing, waveform, and network connectivity. With our ML-based data reduction applicable to existing multichannel recording hardware while achieving neuronal signals of broad bandwidths, we expect to enable more comprehensive analysis and control of brain functions.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Masculino , Potenciales de Acción/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Electrodos , Aprendizaje Automático
4.
Sci Data ; 10(1): 861, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049462

RESUMEN

Despite the importance of hypothalamic neurocircuits in regulating homeostatic and survival-related behaviors, our understanding of the intrinsic molecular identities of neural components involved in these complex multi-synaptic interactions remains limited. In this study, we constructed a Cre recombinase-dependent pseudorabies virus (PRVs) capable of crossing synapses, coupled with transcriptome analysis of single upstream neurons post-infection. By utilizing this retrograde nuclear Connect-seq (nuConnect-seq) approach, we generated a single nuclei RNA-seq (snRNA-seq) dataset of 1,533 cells derived from the hypothalamus of CRH-IRES-Cre (CRH-Cre) mice. To ensure the technical validity of our nuConnect-seq dataset, we employed a label transfer technique against an integrated reference dataset of postnatal mouse hypothalamus comprising 152,524 QC-passed cells. The uniqueness of our approach lies in the integration of diverse datasets for validation, providing a more nuanced diversity of hypothalamic cell types. The presented validated dataset may deepen our understanding of hypothalamic neurocircuits and underscore the essential role of comprehensive integrated transcriptomic data for technical validity.


Asunto(s)
Herpesvirus Suido 1 , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Herpesvirus Suido 1/genética , Hipotálamo , Neuronas/metabolismo
5.
Anim Cells Syst (Seoul) ; 27(1): 425-435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125761

RESUMEN

Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.

6.
Exp Neurobiol ; 32(4): 259-270, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37749927

RESUMEN

Circadian rhythm is a 24-hour cycle of behavioral and physiological changes. Disrupted sleep-wake patterns and circadian dysfunction are common in patients of Alzheimer Disease (AD) and are closely related with neuroinflammation. However, it is not well known how circadian rhythm of immune cells is altered during the progress of AD. Previously, we found presenilin 2 (Psen2) N141I mutation, one of familial AD (FAD) risk genes, induces hyperimmunity through the epigenetic repression of REV-ERBα expression in microglia and bone marrow-derived macrophage (BMDM) cells. Here, we investigated whether repression of REV-ERBα is associated with dysfunction of immune cell-endogenous or central circadian rhythm by analyses of clock genes expression and cytokine secretion, bioluminescence recording of rhythmic PER2::LUC expression, and monitoring of animal behavioral rhythm. Psen2 N141I mutation down-regulated REV-ERBα and induced selective over-production of IL-6 (a well-known clock-dependent cytokine) following the treatment of toll-like receptor (TLR) ligands in microglia, astrocytes, and BMDM. Psen2 N141I mutation also lowered amplitude of intrinsic daily oscillation in these immune cells representatives of brain and periphery. Of interest, however, the period of daily rhythm remained intact in immune cells. Furthermore, analyses of the central clock and animal behavioral rhythms revealed that central clock remained normal without down-regulation of REV-ERBα. These results suggest that Psen2 N141I mutation induces hyperimmunity mainly through the suppression of REV-ERBα in immune cells, which have lowered amplitude but normal period of rhythmic oscillation. Furthermore, our data reveal that central circadian clock is not affected by Psen2 N141I mutation.

7.
Front Neurosci ; 17: 1161592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638314

RESUMEN

Recent developments in artificial neural networks and their learning algorithms have enabled new research directions in computer vision, language modeling, and neuroscience. Among various neural network algorithms, spiking neural networks (SNNs) are well-suited for understanding the behavior of biological neural circuits. In this work, we propose to guide the training of a sparse SNN in order to replace a sub-region of a cultured hippocampal network with limited hardware resources. To verify our approach with a realistic experimental setup, we record spikes of cultured hippocampal neurons with a microelectrode array (in vitro). The main focus of this work is to dynamically cut unimportant synapses during SNN training on the fly so that the model can be realized on resource-constrained hardware, e.g., implantable devices. To do so, we adopt a simple STDP learning rule to easily select important synapses that impact the quality of spike timing learning. By combining the STDP rule with online supervised learning, we can precisely predict the spike pattern of the cultured network in real-time. The reduction in the model complexity, i.e., the reduced number of connections, significantly reduces the required hardware resources, which is crucial in developing an implantable chip for the treatment of neurological disorders. In addition to the new learning algorithm, we prototype a sparse SNN hardware on a small FPGA with pipelined execution and parallel computing to verify the possibility of real-time replacement. As a result, we can replace a sub-region of the biological neural circuit within 22 µs using 2.5 × fewer hardware resources, i.e., by allowing 80% sparsity in the SNN model, compared to the fully-connected SNN model. With energy-efficient algorithms and hardware, this work presents an essential step toward real-time neuroprosthetic computation.

8.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537215

RESUMEN

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Asunto(s)
Ritmo Circadiano , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Conducta Social , Animales , Ratones , Ritmo Circadiano/genética , Núcleo Dorsal del Rafe/metabolismo , Mamíferos/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Serotonina , Interacción Social
9.
Sci Adv ; 8(41): eabo7527, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36223467

RESUMEN

Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.

11.
Nat Commun ; 13(1): 1972, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418126

RESUMEN

Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα.


Asunto(s)
Represión Epigenética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Presenilina-2/genética , Animales , Ritmo Circadiano/fisiología , Inmunidad , Ratones , Mutación , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo
12.
Neurotherapeutics ; 19(2): 592-607, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322351

RESUMEN

Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Isoquinolinas , Ratones , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/etiología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/patología , Calidad de Vida , Tiofenos , Tirosina 3-Monooxigenasa/metabolismo
13.
Neuron ; 110(2): 266-279.e9, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34687664

RESUMEN

Thermoregulatory behavior is a basic motivated behavior for body temperature homeostasis. Despite its fundamental importance, a forebrain region or defined neural population required for this process has yet to be established. Here, we show that Vgat-expressing neurons in the lateral hypothalamus (LHVgat neurons) are required for diverse thermoregulatory behaviors. The population activity of LHVgat neurons is increased during thermoregulatory behavior and bidirectionally encodes thermal punishment and reward (P&R). Although this population also regulates feeding and caloric reward, inhibition of parabrachial inputs selectively impaired thermoregulatory behaviors and encoding of thermal stimulus by LHVgat neurons. Furthermore, two-photon calcium imaging revealed a subpopulation of LHVgat neurons bidirectionally encoding thermal P&R, which is engaged during thermoregulatory behavior, but is largely distinct from caloric reward-encoding LHVgat neurons. Our data establish LHVgat neurons as a required neural substrate for behavioral thermoregulation and point to the key role of the thermal P&R-encoding LHVgat subpopulation in thermoregulatory behavior.


Asunto(s)
Área Hipotalámica Lateral , Prosencéfalo , Regulación de la Temperatura Corporal , Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Recompensa
14.
Cereb Cortex Commun ; 2(4): tgab058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746790

RESUMEN

The brain's mechanisms for categorizing different odors have long been a research focus. Previous studies suggest that odor categorization may involve multiple neurological processes within the brain with temporal and spatial neuronal activation. However, there is limited evidence regarding temporally mediated mechanisms in humans, especially millisecond odor processing. Such mechanisms may be important because different brain areas may play different roles at a particular activation time during sensory processing. Here, we focused on how the brain categorizes odors at specific time intervals. Using multivariate electroencephalography (EEG) analysis, we found that similarly perceived odors induced similar EEG signals during 50-100, 150-200, and 350-400 ms at the theta frequency. We also found significant activation at 100-150 and 350-400 ms at the gamma frequency. At these two frequencies, significant activation was observed in some olfactory-associated areas, including the orbitofrontal cortex. Our findings provide essential evidence that specific periods may be related to odor quality processing during central olfactory processing.

15.
J Neural Eng ; 18(6)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34795067

RESUMEN

Objective. Neural interfaces are an essential tool to enable the human body to directly communicate with machines such as computers or prosthetic robotic arms. Since invasive electrodes can be located closer to target neurons, they have advantages such as precision in stimulation and high signal-to-noise ratio (SNR) in recording, while they often exhibit unstable performance in long-termin-vivoimplantation because of the tissue damage caused by the electrodes insertion. In the present study, we investigated the electrical functionality of flexible penetrating microelectrode arrays (FPMAs) up to 3 months inin-vivoconditions.Approach. Thein-vivoexperiment was performed by implanting FPMAs in five rats. Thein-vivoimpedance as well as the action potential (AP) amplitude and SNR were analyzed over weeks. Additionally, APs were tracked over time to investigate the possibility of single neuron recording.Main results. It was observed that the FPMAs exhibited dramatic increases in impedance for the first 4 weeks after implantation, accompanied by decreases in AP amplitude. However, the increase/decrease in AP amplitude was always accompanied by the increase/decrease in background noise, resulting in quite consistently maintained SNRs. After 4 weeks of implantation, we observed two distinctive issues regarding long-term implantation, each caused by chronic tissue responses or by the delamination of insulation layer. The results demonstrate that the FPMAs successfully recorded neuronal signals up to 12 weeks, with very stably maintained SNRs, reduced by only 16.1% on average compared to the first recordings, although biological tissue reactions or physical degradation of the FPMA were present.Significance. The fabricated FPMAs successfully recorded intracortical signals for 3 months. The SNR was maintained up to 3 months and the chronic function of FPMA was comparable with other silicon based implantable electrodes.


Asunto(s)
Neuronas , Silicio , Potenciales de Acción/fisiología , Animales , Electrodos Implantados , Microelectrodos , Neuronas/fisiología , Ratas
16.
Endocrinol Metab (Seoul) ; 36(4): 745-756, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34474513

RESUMEN

Intermittent fasting has become an increasingly popular strategy in losing weight and associated reduction in obesity-related medical complications. Overwhelming studies support metabolic improvements from intermittent fasting in blood glucose levels, cardiac and brain function, and other health benefits, in addition to weight loss. However, concerns have also been raised on side effects including muscle loss, ketosis, and electrolyte imbalance. Of particular concern, the effect of intermittent fasting on hormonal circadian rhythms has received little attention. Given the known importance of circadian hormonal changes to normal physiology, potential detrimental effects by dysregulation of hormonal changes deserve careful discussions. In this review, we describe the changes in circadian rhythms of hormones caused by intermittent fasting. We covered major hormones commonly pathophysiologically involved in clinical endocrinology, including insulin, thyroid hormones, and glucocorticoids. Given that intermittent fasting could alter both the level and frequency of hormone secretion, decisions on practicing intermittent fasting should take more considerations on potential detrimental consequences versus beneficial effects pertaining to individual health conditions.


Asunto(s)
Ritmo Circadiano , Ayuno , Ritmo Circadiano/fisiología , Humanos , Insulina , Obesidad , Pérdida de Peso
17.
Microsyst Nanoeng ; 7: 66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567778

RESUMEN

The demand for multifunctional neural interfaces has grown due to the need to provide a better understanding of biological mechanisms related to neurological diseases and neural networks. Direct intracerebral drug injection using microfluidic neural interfaces is an effective way to deliver drugs to the brain, and it expands the utility of drugs by bypassing the blood-brain barrier (BBB). In addition, uses of implantable neural interfacing devices have been challenging due to inevitable acute and chronic tissue responses around the electrodes, pointing to a critical issue still to be overcome. Although neural interfaces comprised of a collection of microneedles in an array have been used for various applications, it has been challenging to integrate microfluidic channels with them due to their characteristic three-dimensional structures, which differ from two-dimensionally fabricated shank-type neural probes. Here we present a method to provide such three-dimensional needle-type arrays with chemical delivery functionality. We fabricated a microfluidic interconnection cable (µFIC) and integrated it with a flexible penetrating microelectrode array (FPMA) that has a 3-dimensional structure comprised of silicon microneedle electrodes supported by a flexible array base. We successfully demonstrated chemical delivery through the developed device by recording neural signals acutely from in vivo brains before and after KCl injection. This suggests the potential of the developed microfluidic neural interface to contribute to neuroscience research by providing simultaneous signal recording and chemical delivery capabilities.

18.
BMB Rep ; 54(8): 393-402, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34078529

RESUMEN

In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice. [BMB Reports 2021; 54(8): 393-402].


Asunto(s)
Actividad Motora/fisiología , Propiocepción/genética , Propiocepción/fisiología , Animales , Caenorhabditis elegans , Drosophila , Retroalimentación Sensorial/fisiología , Humanos , Cinestesia/fisiología , Locomoción/fisiología , Ratones , Neuronas Motoras/fisiología , Equilibrio Postural/fisiología , Células Receptoras Sensoriales/fisiología
19.
Sci Rep ; 11(1): 2575, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510438

RESUMEN

The mammalian molecular clock is based on a transcription-translation feedback loop (TTFL) comprising the Period1, 2 (Per1, 2), Cryptochrome1, 2 (Cry1, 2), and Brain and Muscle ARNT-Like 1 (Bmal1) genes. The robustness of the TTFL is attributed to genetic redundancy among some essential clock genes, deterring genetic studies on molecular clocks using genome editing targeting single genes. To manipulate multiple clock genes in a streamlined and efficient manner, we developed a CRISPR-Cas9-based single adeno-associated viral (AAV) system targeting the circadian clock (CSAC) for essential clock genes including Pers, Crys, or Bmal1. First, we tested several single guide RNAs (sgRNAs) targeting individual clock genes in silico and validated their efficiency in Neuro2a cells. To target multiple genes, multiplex sgRNA plasmids were constructed using Golden Gate assembly and packaged into AAVs. CSAC efficiency was evident through protein downregulation in vitro and ablated molecular oscillation ex vivo. We also measured the efficiency of CSAC in vivo by assessing circadian rhythms after injecting CSAC into the suprachiasmatic nuclei of Cas9-expressing knock-in mice. Circadian locomotor activity and body temperature rhythms were severely disrupted in these mice, indicating that our CSAC is a simple yet powerful tool for investigating the molecular clock in vivo.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Animales , Temperatura Corporal , Sistemas CRISPR-Cas/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Dependovirus/genética , Locomoción/genética , Locomoción/fisiología , Ratones , Neurociencias
20.
Exp Mol Med ; 52(9): 1614-1626, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968200

RESUMEN

Circadian clock controls an organism's biological rhythm and regulates its physiological processes in response to external time cues. Most living organisms have their own time-keeping mechanism that is maintained by transcriptional-translational autoregulatory feedback loops involving several core clock genes, such as Period. Recent studies have found the relevance between the modulation of circadian oscillation and posttranscriptional modifications by microRNAs (miRNAs). However, there are limited studies on candidate miRNAs that regulate circadian oscillation. Here, we characterize the functions of novel miRNA-25 regulating circadian Period2 (Per2) expression. Using several in silico algorithms, we identified novel miR-25-3p that, together with miR-24-3p, targets the Per2 gene. Luciferase reporter assays validated that miR-25-3p and miR-24-3p repressed Per2 expression and confirmed their predicted binding sites in the 3'-untranslated region (UTR) of Per2 mRNA. Real-time bioluminescence analyses using Per2::Luc mouse embryonic fibroblasts confirmed that PER2 protein oscillation patterns were responsive to miR-25-3p and miR-24-3. The overexpression of miR-25-3p or miR-24-3p resulted in the dampening and period shortening of the PER2::LUC oscillation, while inhibition of either miRNA increased the relative amplitude of the PER2::LUC oscillation. Notably, endogenous miR-25-3p expression in the suprachiasmatic nucleus (SCN) showed no circadian rhythmicity, but the expression levels differed in various brain regions and peripheral tissues. These results suggest that the posttranscriptional regulation of miR-25-3p and miR-24-3p may differ according to Per2 gene expression in different tissue regions. In summary, we found that novel miR-25-3p was involved in fine-tuning circadian rhythmicity by regulating Per2 oscillation at the posttranscriptional level and that it functioned synergistically with miR-24-3p to affect Per2 oscillation.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Proteínas Circadianas Period/genética , Interferencia de ARN , Regiones no Traducidas 3' , Animales , Encéfalo/metabolismo , Línea Celular , Ritmo Circadiano/genética , Genes Reporteros , Masculino , Ratones , Procesamiento Postranscripcional del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...