Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 941: 173587, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810754

RESUMEN

This study investigated the impact of large-scale incineration facilities on PM2.5 levels in Seoul during winter. Due to the challenge of obtaining accurate combustion data from external sources, heat supply records were used as a proxy for combustion activity. To assess health risks, dithiothreitol-oxidative potential (DTT-OP) was analyzed to identify potential hazards to human health. By comparing DTT-OP with PM2.5 sources related to combustion, the study aimed to understand the impact of local pollution sources on human health in Seoul. The diurnal analysis showed that oxidative potential (0.19 µM/m3) and the biomass burning factor (5.53 µg/m3) peaked between 4:00 and 8:00 AM, with lower levels observed from 12:00 to 20:00. A significant correlation was found between combustion sources and oxidative potential, with a high correlation coefficient (r2 = 0.92). The presence of terephthalic acid (TPA) in the Cellulose combustion source profile, which is produced by the pyrolysis of plastics like polyester fiber and polyethylene terephthalate (PET), further supported the link to emissions from incineration facilities. These findings suggest that the biomass burning source is strongly correlated with DTT-OP, indicating a significant association with health risks among various local sources of PM2.5 in Seoul.


Asunto(s)
Contaminantes Atmosféricos , Biomasa , Monitoreo del Ambiente , Incineración , Material Particulado , Ácidos Ftálicos , Ácidos Ftálicos/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Seúl , Oxidación-Reducción , Contaminación del Aire/estadística & datos numéricos , República de Corea
2.
Environ Pollut ; 347: 123666, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417601

RESUMEN

In the context of air quality research, the collection and analysis of fine particulate matter (PM2.5, with a diameter less than 2.5 µm) and volatile organic compound (VOCs) play a pivotal role in understanding and addressing environmental issues across the Korean Peninsula. PM2.5 and VOCs were collected over 4-hr intervals from October 17 to November 26, 2021 during the 2021 Satellite Integrated Joint Monitoring of Air Quality campaign at Olympic Park in the Republic of Korea to understand the factors controlling air quality over the Seoul Metropolitan Area. Source apportionment was performed using the positive matrix factorization (PMF) model incorporating PM2.5 and VOCs. The factor identified by chlorinated VOCs as a major component was presumed to be due to transboundary influx and was referred to as the long-range transport factor. The long-range transport factor of PM2.5 was composed of NO3-, SO42-, NH4+, and di-carboxylic acids. Back trajectory analysis showed that the airflows originated from China and passed through the west coast of Korea to the Korean Peninsula. In the PMF results using PM2.5 and VOCs, long-range transport factors were identified in both analyses, and the high correlation observed between these factors confirms that they were transported from abroad. The dithiothreitol oxidation potential normalized to quinine showed the highest oxidation potential during the same period as the long-range transport factors increased. In conclusion, PM2.5 from external sources significantly contribute to elevated levels of dithiothreitol assay-oxidative potential (DTT-OP) in Korea. The toxic concentration, expressed as the mean ± standard deviation, was determined to be 0.29 ± 0.05 µM/m³, peaking at 0.39 µM/m³. This level is 1.8 times higher than that observed outside the event period. A notable increase in secondary pollutants was observed during these periods. These pollutants are known to enhance oxidative potential, thereby potentially impacting human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ditiotreitol , Monitoreo del Ambiente/métodos , Estrés Oxidativo , Material Particulado/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
3.
Environ Monit Assess ; 196(2): 121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194187

RESUMEN

Gas-phase NH3 is one of the significant contributors to secondary aerosol formation in the atmosphere, and it is a crucial consideration in any strategy aiming to reduce PM2.5 emissions. This study aimed to investigate the spatial distributions of NH3 in verity source areas in Republic of Korea using passive samplers. NH3 concentrations were observed at 45 locations over a period of approximately 35 weeks, from June 2022 to February 2023. As a result, NH3 concentration was found to be more affected by local sources rather than long-distance influx from outside. The average concentration of NH3 observed in 7 source areas excluding the background area was all less than 20.91 ppb, except for livestock sources. These results suggest that atmospheric NH3 concentrations are significantly influenced from livestock sources. In addition, in major cities, the need for NH3 management was confirmed to be more focused on emissions from automobiles and industrial complexes than emissions from livestock and farmland. Moreover, even for the same source, NH3 concentrations varied depending on the type of livestock species, breeding methods and scale, products produced, crops cultivated, and vehicle traffic volume. These findings indicate the importance of considering factors such as breeding methods and manure treatment practices in emission factors, and it is expected that the results can be used as basic data for NH3 emission estimation and management.


Asunto(s)
Monitoreo del Ambiente , Fitomejoramiento , Animales , República de Corea , Atmósfera , Automóviles , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...