Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(11): 111806, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516764

RESUMEN

In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)ß/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARß/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.


Asunto(s)
Tejido Adiposo Pardo , PPAR-beta , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , PPAR-beta/metabolismo , Lipoproteínas VLDL/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Noqueados , Mamíferos
2.
Nat Commun ; 13(1): 3268, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672324

RESUMEN

Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes.


Asunto(s)
Adipocitos Beige , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , MicroARNs , Adipocitos , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Ratones , MicroARNs/metabolismo , Termogénesis/genética
3.
Cell Metab ; 34(3): 458-472.e6, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021043

RESUMEN

In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Mamíferos , Células Madre/metabolismo , Grasa Subcutánea/metabolismo
4.
Diabetes ; 70(1): 182-195, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046512

RESUMEN

Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Beclina-1/metabolismo , Resistencia a la Insulina/genética , Lipodistrofia/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Beclina-1/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Homeostasis/genética , Inflamación/genética , Inflamación/metabolismo , Lipodistrofia/genética , Enfermedades Metabólicas/genética , Ratones , Ratones Noqueados
6.
Nat Commun ; 11(1): 578, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996685

RESUMEN

Lipid droplets (LDs) are key subcellular organelles for regulating lipid metabolism. Although several subcellular organelles participate in lipid metabolism, it remains elusive whether physical contacts between subcellular organelles and LDs might be involved in lipolysis upon nutritional deprivation. Here, we demonstrate that peroxisomes and peroxisomal protein PEX5 mediate fasting-induced lipolysis by stimulating adipose triglyceride lipase (ATGL) translocation onto LDs. During fasting, physical contacts between peroxisomes and LDs are increased by KIFC3-dependent movement of peroxisomes toward LDs, which facilitates spatial translocations of ATGL onto LDs. In addition, PEX5 could escort ATGL to contact points between peroxisomes and LDs in the presence of fasting cues. Moreover, in adipocyte-specific PEX5-knockout mice, the recruitment of ATGL onto LDs was defective and fasting-induced lipolysis is attenuated. Collectively, these data suggest that physical contacts between peroxisomes and LDs are required for spatiotemporal translocation of ATGL, which is escorted by PEX5 upon fasting, to maintain energy homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ayuno/efectos adversos , Gotas Lipídicas/metabolismo , Lipólisis/fisiología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis Espacio-Temporal , Células 3T3-L1/metabolismo , Adipocitos/metabolismo , Animales , Caenorhabditis elegans , Señales (Psicología) , Citoesqueleto , Cinesinas/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nutrientes , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/genética , Transducción de Señal
7.
Front Immunol ; 11: 598566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584664

RESUMEN

Accumulating evidence reveals that adipose tissue is an immunologically active organ that exerts multiple impacts on the regulation of systemic energy metabolism. Adipose tissue immunity is modulated by the interactions between adipocytes and various immune cells. Nevertheless, the underlying mechanisms that control inter-cellular interactions between adipocytes and immune cells in adipose tissue have not been thoroughly elucidated. Recently, it has been demonstrated that adipocytes utilize lipid metabolites as a key mediator to initiate and mediate diverse adipose tissue immune responses. Adipocytes present lipid antigens and secrete lipid metabolites to determine adipose immune tones. In addition, the interactions between adipocytes and adipose immune cells are engaged in the control of adipocyte fate and functions upon metabolic stimuli. In this review, we discuss an integrated view of how adipocytes communicate with adipose immune cells using lipid metabolites. Also, we briefly discuss the newly discovered roles of adipose stem cells in the regulation of adipose tissue immunity.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Animales , Presentación de Antígeno , Biomarcadores , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunidad Innata , Inmunomodulación , Lípidos/inmunología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Paniculitis/etiología , Paniculitis/metabolismo , Paniculitis/patología , Células Madre/metabolismo
8.
Diabetes ; 69(1): 20-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604693

RESUMEN

Adipose tissue is the key organ coordinating whole-body energy homeostasis. Although it has been reported that ring finger protein 20 (RNF20) regulates lipid metabolism in the liver and kidney, the roles of RNF20 in adipose tissue have not been explored. Here, we demonstrate that RNF20 promotes adipogenesis by potentiating the transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ). Under normal chow diet feeding, Rnf20 defective (Rnf20 +/- ) mice exhibited reduced fat mass with smaller adipocytes compared with wild-type littermates. In addition, high-fat diet-fed Rnf20 +/- mice alleviated systemic insulin resistance accompanied by a reduced expansion of fat tissue. Quantitative proteomic analyses revealed significantly decreased levels of PPARγ target proteins in adipose tissue of Rnf20 +/- mice. Mechanistically, RNF20 promoted proteasomal degradation of nuclear corepressor 1 (NCoR1), which led to stimulation of the transcriptional activity of PPARγ. Collectively, these data suggest that RNF20-NCoR1 is a novel axis in adipocyte biology through fine-tuning the transcriptional activity of PPARγ.


Asunto(s)
Adipocitos/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR gamma/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Dieta Alta en Grasa , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , PPAR gamma/fisiología , Proteolisis , Transactivadores/genética , Transactivadores/fisiología , Ubiquitina-Proteína Ligasas/genética
9.
Genes Dev ; 33(23-24): 1657-1672, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727774

RESUMEN

In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Muerte Celular/fisiología , Activación de Linfocitos/fisiología , Células T Asesinas Naturales/fisiología , Obesidad/fisiopatología , Células 3T3 , Adipocitos/inmunología , Adipocitos/metabolismo , Animales , Proliferación Celular , Proteína Ligando Fas/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor fas/metabolismo
10.
Mol Cell Biol ; 39(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308132

RESUMEN

Adipocytes have unique morphological traits in insulin sensitivity control. However, how the appearance of adipocytes can determine insulin sensitivity has not been understood. Here, we demonstrate that actin cytoskeleton reorganization upon lipid droplet (LD) configurations in adipocytes plays important roles in insulin-dependent glucose uptake by regulating GLUT4 trafficking. Compared to white adipocytes, brown/beige adipocytes with multilocular LDs exhibited well-developed filamentous actin (F-actin) structure and potentiated GLUT4 translocation to the plasma membrane in the presence of insulin. In contrast, LD enlargement and unilocularization in adipocytes downregulated cortical F-actin formation, eventually leading to decreased F-actin-to-globular actin (G-actin) ratio and suppression of insulin-dependent GLUT4 trafficking. Pharmacological inhibition of actin polymerization accompanied with impaired F/G-actin dynamics reduced glucose uptake in adipose tissue and conferred systemic insulin resistance in mice. Thus, our study reveals that adipocyte remodeling with different LD configurations could be an important factor to determine insulin sensitivity by modulating F/G-actin dynamics.


Asunto(s)
Actinas/metabolismo , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Gotas Lipídicas/metabolismo , Citoesqueleto de Actina/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Transporte de Proteínas
11.
Proc Natl Acad Sci U S A ; 116(24): 11936-11945, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31160440

RESUMEN

Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Células Madre/metabolismo , Tejido Subcutáneo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adipocitos/metabolismo , Adiposidad/genética , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Insulina/metabolismo , Grasa Intraabdominal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
Mol Cell Biol ; 39(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397073

RESUMEN

Oxygen is a key molecule for efficient energy production in living organisms. Although aerobic organisms have adaptive processes to survive in low-oxygen environments, it is poorly understood how lipolysis, the first step of energy production from stored lipid metabolites, would be modulated during hypoxia. Here, we demonstrate that fasting-induced lipolysis is downregulated by hypoxia through the hypoxia-inducible factor (HIF) signaling pathway. In Caenorhabditis elegans and mammalian adipocytes, hypoxia suppressed protein kinase A (PKA)-stimulated lipolysis, which is evolutionarily well conserved. During hypoxia, the levels of PKA activity and adipose triglyceride lipase (ATGL) protein were downregulated, resulting in attenuated fasting-induced lipolysis. In worms, HIF stabilization was sufficient to moderate the suppressive effect of hypoxia on lipolysis through ATGL and PKA inhibition. These data suggest that HIF activation under hypoxia plays key roles in the suppression of lipolysis, which might preserve energy resources in both C. elegans and mammalian adipocytes.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Lipasa/metabolismo , Células 3T3 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Lípidos/fisiología , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Ratones , Nematodos , Fosforilación , Transducción de Señal
13.
Diabetes ; 68(1): 81-94, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352876

RESUMEN

SREBP1c is a key transcription factor for de novo lipogenesis. Although SREBP1c is expressed in pancreatic islets, its physiological roles in pancreatic ß-cells are largely unknown. In this study, we demonstrate that SREBP1c regulates ß-cell compensation under metabolic stress. SREBP1c expression level was augmented in pancreatic islets from obese and diabetic animals. In pancreatic ß-cells, SREBP1c activation promoted the expression of cell cycle genes and stimulated ß-cell proliferation through its novel target gene, PAX4 Compared with SREBP1c+/+ mice, SREBP1c-/- mice showed glucose intolerance with low insulin levels. Moreover, ß-cells from SREBP1c-/- mice exhibited reduced capacity to proliferate and secrete insulin. Conversely, transplantation of SREBP1c-overexpressing islets restored insulin levels and relieved hyperglycemia in streptozotocin-induced diabetic animals. Collectively, these data suggest that pancreatic SREBP1c is a key player in mediating ß-cell compensatory responses in obesity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunoprecipitación de Cromatina , Proteínas de Homeodominio/genética , Inmunohistoquímica , Masculino , Ratones , Factores de Transcripción Paired Box/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
14.
J Biol Chem ; 293(36): 13974-13988, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30042231

RESUMEN

Lipid droplets are specialized cellular organelles that contain neutral lipid metabolites and play dynamic roles in energy homeostasis. Perilipin 1 (Plin1), one of the major lipid droplet-binding proteins, is highly expressed in adipocytes. In mice, Plin1 deficiency impairs peripheral insulin sensitivity, accompanied with reduced fat mass. However, the mechanisms underlying insulin resistance in lean Plin1 knockout (Plin1-/-) mice are largely unknown. The current study demonstrates that Plin1 deficiency promotes inflammatory responses and lipolysis in adipose tissue, resulting in insulin resistance. M1-type adipose tissue macrophages (ATMs) were higher in Plin1-/- than in Plin1+/+ mice on normal chow diet. Moreover, using lipidomics analysis, we discovered that Plin1-/- adipocytes promoted secretion of pro-inflammatory lipid metabolites such as prostaglandins, which potentiated monocyte migration. In lean Plin1-/- mice, insulin resistance was relieved by macrophage depletion with clodronate, implying that elevated pro-inflammatory ATMs might be attributable for insulin resistance under Plin1 deficiency. Together, these data suggest that Plin1 is required to restrain fat loss and pro-inflammatory responses in adipose tissue by reducing futile lipolysis to maintain metabolic homeostasis.


Asunto(s)
Tejido Adiposo/patología , Inflamación/etiología , Metabolismo de los Lípidos , Perilipina-1/deficiencia , Adipocitos/metabolismo , Animales , Resistencia a la Insulina , Lipólisis , Macrófagos/patología , Ratones , Ratones Noqueados
15.
Front Immunol ; 9: 1311, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951059

RESUMEN

Adipose tissue is a metabolic organ that plays a central role in controlling systemic energy homeostasis. Compelling evidence indicates that immune system is closely linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently leads to dysfunction of adipose tissue as well as whole body energy homeostasis. Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between adipocytes and resident invariant natural killer T (iNKT) cells is a major component of defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids loaded on CD1d as antigens, whereas most other immune cells are activated by peptide antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, we provide an overview of the molecular and cellular determinants of obesity-induced adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte interaction in maintaining adipose tissue homeostasis as well as the consequent modulation in systemic energy metabolism. We also briefly discuss future research directions regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue inflammation.

16.
Nat Commun ; 8(1): 1087, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057873

RESUMEN

Obesity is closely associated with increased adipose tissue macrophages (ATMs), which contribute to systemic insulin resistance and altered lipid metabolism by creating a pro-inflammatory environment. Very low-density lipoprotein receptor (VLDLR) is involved in lipoprotein uptake and storage. However, whether lipid uptake via VLDLR in macrophages affects obesity-induced inflammatory responses and insulin resistance is not well understood. Here we show that elevated VLDLR expression in ATMs promotes adipose tissue inflammation and glucose intolerance in obese mice. In macrophages, VLDL treatment upregulates intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, which potentiates pro-inflammatory responses and promotes M1-like macrophage polarization. Adoptive transfer of VLDLR knockout bone marrow to wild-type mice relieves adipose tissue inflammation and improves insulin resistance in diet-induced obese mice. These findings suggest that increased VLDL-VLDLR signaling in ATMs aggravates adipose tissue inflammation and insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/inmunología , Macrófagos/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Receptores de LDL/metabolismo , Tejido Adiposo/inmunología , Animales , Western Blotting , Citometría de Flujo , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Adipocyte ; 6(2): 147-153, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28425844

RESUMEN

Obesity is closely associated with metabolic diseases including type 2 diabetes. One hallmark characteristics of obesity is chronic inflammation that is coordinately controlled by complex signaling networks in adipose tissues. Compelling evidence indicates that reactive oxygen species (ROS) and its related signaling pathways play crucial roles in the progression of chronic inflammation in obesity. The pentose phosphate pathway (PPP) is an anabolic pathway that utilizes the glucoses to generate molecular building blocks and reducing equivalents in the form of NADPH. In particular, NADPH acts as one of the key modulators in the control of ROS through providing an electron for both ROS generation and scavenging. Recently, we have reported that glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the PPP, is implicated in adipose tissue inflammation and systemic insulin resistance in obesity. Mechanistically, G6PD potentiates generation of ROS that augments pro-inflammatory responses in adipose tissue macrophages, leading to systemic insulin resistance. Here, we provide an overview of cell type- specific roles of G6PD in the regulation of ROS balance as well as additional details on the significance of G6PD that contributes to pro-oxidant NADPH generation in obesity-related chronic inflammation and insulin resistance.


Asunto(s)
Tejido Adiposo/inmunología , Glucosafosfato Deshidrogenasa/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/inmunología , Inflamación/enzimología , Inflamación/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Obesidad/enzimología , Obesidad/inmunología , Obesidad/metabolismo , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Oncotarget ; 8(3): 4181-4195, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27935858

RESUMEN

Epidermal growth factor (EGF) signaling promotes cell proliferation and survival in several types of cancer. Here, however, we showed that EGF inhibits proliferation and promotes programmed cell death in non-small cell lung cancer (NSCLC) cells. In A549 cells, EGF increased redox factor-1 (Ref-1) expression and the association of Ref-1 with zinc finger-containing transcriptional regulator (EGR1) via activation of p22phox, RAC1, and an NADPH oxidase subunit. EGF increased p22phox and RAC1 expression through activation of purinergic receptors (P2Y). Elevated Ref-1/EGR1 levels increased phosphatase and tensin homolog (PTEN) levels, leading to inhibition of the Akt pathway. EGF-induced PTEN upregulation increased apoptosis and autophagy-induced damage in A549 cells, whereas Ref-1 knockdown blocked EGF-induced PTEN upregulation in an NADPH oxidase p22phox subunit-independent manner. In addition, p22phox knockdown restored EGF-induced effects, implying that changes in P2Y activity caused by EGF, which activates NADPH oxidase via RAC1, influenced Ref-1-mediated redox regulation. Finally, EGF similarly attenuated cell proliferation and promoted autophagy and apoptosis in vivo in a xenograft model using A549 cells. These findings reveal that EGF-induced redox signaling is linked to Ref-1-induced death in NSCLC cells.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor de Crecimiento Epidérmico/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Fosfohidrolasa PTEN/metabolismo , Regulación hacia Arriba , Células A549 , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor de Crecimiento Epidérmico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Diabetes ; 65(9): 2624-38, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284106

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses.


Asunto(s)
Tejido Adiposo/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/inmunología , Obesidad/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo/inmunología , Animales , Western Blotting , Medios de Cultivo Condicionados , Dieta Alta en Grasa/efectos adversos , Ayuno/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Inmunohistoquímica , Insulina/sangre , Resistencia a la Insulina/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Mutantes , Obesidad/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Artículo en Inglés | MEDLINE | ID: mdl-27148161

RESUMEN

The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA