Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042445

RESUMEN

PURPOSE: Mutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. Here, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models. EXPERIMENTAL DESIGN: We performed RNA-sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wildtype glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status. RESULTS: Among patient samples, IDH-mutant tumors displayed underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and MDSCs. Introduction of the IDH-mutant enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples. CONCLUSIONS: We provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant-IDH and may be targetable through therapeutic approaches.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38995025

RESUMEN

BACKGROUND AND OBJECTIVES: Neuronavigation is a fundamental tool in the resection of intracranial tumors. However, it is limited by its calibration to preoperative neuroimaging, which loses accuracy intraoperatively after brain shift. Therefore, surgeons rely on anatomic landmarks or tools like intraoperative MRI to assess the extent of tumor resection (EOR) and update neuronavigation. Recent studies demonstrate that intraoperative ultrasound (iUS) provides point-of-care imaging without the cost or resource utilization of an intraoperative MRI, and advances in neuronavigation-guided iUS provide an opportunity for real-time imaging overlaid with neuronavigation to account for brain shift. We assessed the feasibility, efficacy, and benefits of navigated iUS to assess the EOR and restore stereotactic accuracy in neuronavigation after brain shift. METHODS: This prospective single-center study included patients presenting with intracranial tumors (gliomas, metastasis) to an academic medical center. Navigated iUS images were acquired preresection, midresection, and postresection. The EOR was determined by the surgeon intraoperatively and compared with the postoperative MRI report by an independent neuroradiologist. Outcome measures included time to perform the iUS sweep, time to process ultrasound images, and EOR predicted by the surgeon intraoperatively compared with the postoperative MRI. RESULTS: This study included 40 patients consisting of gliomas (n = 18 high-grade gliomas, n = 4 low-grade gliomas, n = 4 recurrent) and metastasis (n = 18). Navigated ultrasound sweeps were performed in all patients (n = 83) with a median time to perform of 5.5 seconds and a median image processing time of 29.9 seconds. There was 95% concordance between the surgeon's and neuroradiologist's determination of EOR using navigated iUS and postoperative MRI, respectively. The sensitivity was 100%, and the specificity was 94%. CONCLUSION: Navigated iUS was successfully used for EOR determination in glioma and metastasis resection. Incorporating navigated iUS into the surgical workflow is safe and efficient and provides a real-time assessment of EOR while accounting for brain shift in intracranial tumor surgeries.

5.
Pharmacol Ther ; 259: 108667, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763321

RESUMEN

This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia Adoptiva/métodos , Animales , Microambiente Tumoral/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología
6.
Neuro Oncol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581292

RESUMEN

BACKGROUND: Survival is variable in patients with glioblastoma IDH wild-type (GBM), even after comparable surgical resection of radiographically-detectable disease, highlighting the limitations of radiographic assessment of infiltrative tumor anatomy. The majority of post-surgical progressive events are failures within 2cm of the resection margin, motivating supramaximal resection strategies to improve local control. However, which patients benefit from such radical resections remains unknown. METHODS: We developed a predictive model to identify which IDH wild-type GBM are amenable to radiographic gross total resection (GTR). We then investigated whether GBM survival heterogeneity following GTR is correlated with microscopic tumor burden a by analyzing tumor cell content at the surgical margin with a rapid qPCR-based method for detection of TERT promoter mutation. RESULTS: Our predictive model for achievable GTR, developed on retrospective radiographic and molecular data of GBM patients undergoing resection, had an AUC of 0.83, sensitivity of 62%, and specificity of 90%. Prospective analysis of this model in 44 patients found 89% of patients were correctly predicted to achieve a RV<4.9cc. Of the 44 prospective patients undergoing rapid qPCR TERT promoter mutation analysis at the surgical margin, 7 had undetectable TERT mutation, of which 5 also had a gross total resection (RV<1cc). In these 5 patients at 30 months follow up, 75% showed no progression, compared to 0% in the group with TERT mutations detected at the surgical margin (p=0.02). CONCLUSIONS: These findings identify a subset of patients with GBM that may derive local control benefit from radical resection to undetectable molecular margins.

7.
Curr Treat Options Oncol ; 25(5): 628-643, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649630

RESUMEN

OPINION STATEMENT: Immunotherapy for glioblastoma (GBM) remains an intensive area of investigation. Given the seismic impact of cancer immunotherapy across a range of malignancies, there is optimism that harnessing the power of immunity will influence GBM as well. However, despite several phase 3 studies, there are still no FDA-approved immunotherapies for GBM. Importantly, the field has learned a great deal from the randomized studies to date. Today, we are continuing to better understand the disease-specific features of the microenvironment in GBM-as well as the exploitable antigenic characteristic of the tumor cells themselves-that are informing the next generation of immune-based therapeutic strategies. The coming phase of next-generation immunotherapies is thus poised to bring us closer to treatments that will improve the lives of patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Inmunoterapia , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Glioblastoma/terapia , Glioblastoma/inmunología , Terapia Combinada/métodos , Resultado del Tratamiento , Manejo de la Enfermedad , Ensayos Clínicos como Asunto
8.
N Engl J Med ; 390(14): 1290-1298, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38477966

RESUMEN

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell-engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants. (Funded by Gateway for Cancer Research and others; INCIPIENT ClinicalTrials.gov number, NCT05660369.).


Asunto(s)
Receptores ErbB , Glioblastoma , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T CD8-positivos/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/terapia , Glioblastoma/patología , Inmunoterapia Adoptiva/efectos adversos , Recurrencia Local de Neoplasia/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico
9.
J Neurosurg Case Lessons ; 7(9)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408351

RESUMEN

BACKGROUND: 5-Aminolevulinic acid (5-ALA) fluorescence-guided surgery is a well-established technique for resecting high-grade gliomas. However, its application in meningiomas, especially those previously treated with radiation therapy, remains under investigation. OBSERVATIONS: A 48-year-old female with recurrent anaplastic meningioma, World Health Organization grade 3, underwent a right-sided craniotomy using off-label 5-ALA as a surgical adjunct. The patient had previously undergone brachytherapy seed implantation (20 × cesium 131) for tumor management. During the surgery, a large fluorescent tumor mass adjacent to the brachytherapy-treated area was resected, and the prior brachytherapy seeds were removed. Interestingly, the surrounding brain tissue in the irradiated area showed robust 5-ALA fluorescence. Pathological examination confirmed that the fluorescent brain tissue was nonneoplastic and associated with lymphocyte and macrophage infiltration. LESSONS: This case report presents unique 5-ALA fluorescence in nonneoplastic tissue following brachytherapy, which was found during the resection of recurrent anaplastic meningioma. This phenomenon may reflect an intricate interplay among radiation therapy, immune cells, the tumor microenvironment, and 5-ALA metabolism. Given that false-positive findings in fluorescence-guided surgery can lead to unnecessary tissue resection and increased surgical morbidity, further research is warranted to elucidate the mechanisms underlying this phenomenon and its implications for meningioma surgery.

10.
Cancer Discov ; 14(6): 1106-1131, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38416133

RESUMEN

Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing with paired V(D)J sequencing, respectively, on TILs from two cohorts of patients totaling 15 patients with high-grade glioma, including GBM or astrocytoma, IDH-mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared with matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T-cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T-cell subset within the GBM microenvironment and may harbor potential therapeutic implications. SIGNIFICANCE: To understand the limited efficacy of immune-checkpoint blockade in GBM, we applied a multiomics approach to understand the TIL landscape. By highlighting the enrichment of GZMK+ effector T cells and the lack of exhausted T cells, we provide a new potential mechanism of resistance to immunotherapy in GBM. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Linfocitos T CD8-positivos , Glioblastoma , Linfocitos Infiltrantes de Tumor , Humanos , Glioblastoma/inmunología , Glioblastoma/terapia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología
11.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393682

RESUMEN

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Asunto(s)
Complejo CD3 , Endopeptidasas , Proteínas Ligadas a GPI , Inmunoterapia Adoptiva , Mesotelina , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Adenocarcinoma/patología
12.
Neurosurg Focus ; 56(2): E2, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301244

RESUMEN

OBJECTIVE: Several studies have compared the immune microenvironment of isocitrate dehydrogenase (IDH)-wildtype glioma versus IDH-mutant glioma. The authors sought to determine whether histological tumor progression in a subset of IDH-mutant glioma was associated with concomitant alterations in the intratumoral immune microenvironment. METHODS: The authors performed bulk RNA sequencing on paired and unpaired samples from patients with IDH-mutant glioma who underwent surgery for tumor progression across multiple timepoints. They compared patterns of differential gene expression, overall inflammatory signatures, and transcriptomic measures of relative immune cell proportions. RESULTS: A total of 55 unique IDH-mutant glioma samples were included in the analysis. The authors identified multiple genes associated with progression and higher grade across IDH-mutant oligodendrogliomas and astrocytomas. Compared with lower-grade paired samples, grade 4 IDH-mutant astrocytomas uniquely demonstrated upregulation of VEGFA in addition to counterproductive alterations in inflammatory score reflective of a more hostile immune microenvironment. CONCLUSIONS: Here, the authors have provided a transcriptomic analysis of a progression cohort for IDH-mutant glioma. Compared with lower-grade tumors, grade 4 astrocytomas displayed alterations that may inform the timing of antiangiogenic and immune-based therapy as these tumors progress.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Regulación hacia Arriba , Mutación/genética , Glioma/genética , Glioma/patología , Astrocitoma/genética , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Neurosurg Focus ; 55(5): E12, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37913538

RESUMEN

OBJECTIVE: Racial and socioeconomic disparities in neuro-oncological care for patients with brain tumors remain underexplored. This study aimed to analyze county-level disparities in glioblastoma (GBM) care in the United States, focusing on access to surgery and the use of adjuvant temozolomide chemotherapy and radiation therapy. METHODS: Using repeated cross-sectional data from the Surveillance, Epidemiology, and End Results 17 database; the Area Health Resources File; and the American Community Survey, from 2010 to 2019, the authors performed multivariate regression analyses to understand the associations between county-level racial and socioeconomic characteristics, as well as the rates of surgery performed, delays in surgery, and use of adjuvant chemotherapy and radiation therapy for newly diagnosed GBM. RESULTS: In total, 29,609 GBM patients from 602 different US counties over a decade were included in this study. Counties with lower rates of surgery for GBM were associated with a higher percentage of Black residents (coefficient [CE] -0.001, 95% CI -0.002 to 0; p < 0.05) and being located in the Midwest (CE -0.132, 95% CI -0.195 to -0.069; p < 0.001) or West (CE -0.127, 95% CI -0.189 to -0.065; p < 0.001) relative to the Northeast. Counties with delayed surgical treatment were more likely to lack neurosurgeons (adjusted OR [aOR] 2.52, 95% CI 1.77-3.60; p < 0.001), have a higher percentage of Black residents (aOR 1.011, 95% CI 1.00-1.02; p < 0.05), and be located in the Midwest (aOR 3.042, 95% CI 1.12-8.24; p < 0.05) or West (aOR 3.175, 95% CI 1.12-8.97 p < 0.05). Counties with high rates of adjuvant radiation therapy were less likely to have higher percentages of Black residents (aOR 0.987, 95% CI 0.980-0.995; p < 0.01) and uninsured individuals (aOR 0.962, 95% CI 0.937-0.987; p < 0.01). CONCLUSIONS: Counties without neurosurgeons and those with a higher percentage of Black patients have delays in surgical care and demonstrate lower overall rates of surgery and adjuvant therapy for GBM. This study underscores the need for targeted interventions and policies that address structural barriers in healthcare access, improve equitable distribution of the neurosurgery workforce, and ensure timely and comprehensive GBM care to all populations.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Estados Unidos/epidemiología , Glioblastoma/epidemiología , Glioblastoma/cirugía , Estudios Transversales , Factores Socioeconómicos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/cirugía , Recursos en Salud
14.
Antibodies (Basel) ; 12(4)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37987252

RESUMEN

This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies can modulate the tumor immune microenvironment, their clinical benefits remain uncertain, largely due to challenges with BBB penetration and tumor-derived immunosuppression. This review also examines emerging targets such as TIGIT and LAG3, the potential of antibodies in modulating the myeloid compartment, and tumor-specific targets for monoclonal antibody therapy. We further delve into advanced strategies such as antibody-drug conjugates and bispecific T cell engagers. Lastly, we explore innovative techniques being investigated to enhance antibody delivery, including CAR T cell therapy. Despite current limitations, these therapies hold significant therapeutic potential for neuro-oncology. Future research should focus on optimizing antibody delivery to the CNS, identifying novel biological targets, and discovering combination therapies to address the hostile tumor microenvironment.

15.
Clin Cancer Res ; 29(16): 3017-3025, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327319

RESUMEN

PURPOSE: We evaluated the efficacy of bavituximab-a mAb with anti-angiogenic and immunomodulatory properties-in newly diagnosed patients with glioblastoma (GBM) who also received radiotherapy and temozolomide. Perfusion MRI and myeloid-related gene transcription and inflammatory infiltrates in pre-and post-treatment tumor specimens were studied to evaluate on-target effects (NCT03139916). PATIENTS AND METHODS: Thirty-three adults with IDH--wild-type GBM received 6 weeks of concurrent chemoradiotherapy, followed by 6 cycles of temozolomide (C1-C6). Bavituximab was given weekly, starting week 1 of chemoradiotherapy, for at least 18 weeks. The primary endpoint was proportion of patients alive at 12 months (OS-12). The null hypothesis would be rejected if OS-12 was ≥72%. Relative cerebral blood flow (rCBF) and vascular permeability (Ktrans) were calculated from perfusion MRIs. Peripheral blood mononuclear cells and tumor tissue were analyzed pre-treatment and at disease progression using RNA transcriptomics and multispectral immunofluorescence for myeloid-derived suppressor cells (MDSC) and macrophages. RESULTS: The study met its primary endpoint with an OS-12 of 73% (95% confidence interval, 59%-90%). Decreased pre-C1 rCBF (HR, 4.63; P = 0.029) and increased pre-C1 Ktrans were associated with improved overall survival (HR, 0.09; P = 0.005). Pre-treatment overexpression of myeloid-related genes in tumor tissue was associated with longer survival. Post-treatment tumor specimens contained fewer immunosuppressive MDSCs (P = 0.01). CONCLUSIONS: Bavituximab has activity in newly diagnosed GBM and resulted in on-target depletion of intratumoral immunosuppressive MDSCs. Elevated pre-treatment expression of myeloid-related transcripts in GBM may predict response to bavituximab.

16.
Tomography ; 9(1): 274-284, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36828374

RESUMEN

While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Linfocitos T/patología , Neoplasias Encefálicas/patología , Inmunoterapia/métodos , Inmunidad
17.
Neurooncol Adv ; 5(1): vdac185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751672

RESUMEN

Background: Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape. Methods: Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues. We employed both standard immunological assays and multiple orthotopic preclinical models including patient-derived xenograft to demonstrate efficacy of this approach against heterogeneous tumors. Results: Tandem CAR T cells displayed enhanced cytotoxicity in vitro against heterogeneous GBM populations, including patient-derived brain tumor cultures (P < .05). Compared to CAR T cells targeting single antigens, dual antigen engagement through the tandem construct was necessary to achieve long-term, complete, and durable responses in orthotopic murine models of heterogeneous GBM, including patient-derived xenografts (P < .05). Conclusions: We demonstrate that TanCART is effective against heterogeneous tumors in the brain. These data lend further credence to the development of multi-specific CAR T cells in the treatment of GBM and other cancers.

19.
Cancer Cell ; 40(5): 494-508.e5, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452603

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is effective in lymphoid malignancies, but there has been limited data in myeloid cancers. Here, we start with a CD27-based CAR to target CD70 ("native") in acute myeloid leukemia (AML), and we find modest efficacy in vivo, consistent with prior reports. We then use orthogonal approaches to increase binding on both the tumor and CAR-T cell sides of the immune synapse: a pharmacologic approach (azacitidine) to increase antigen density of CD70 in myeloid tumors, and an engineering approach to stabilize binding of the CAR to CD70. To accomplish the latter, we design a panel of hinge-modified regions to mitigate cleavage of the extracellular portion of CD27. Our CD8 hinge and transmembrane-modified CD70 CAR-T cells are less prone to cleavage, have enhanced binding avidity, and increased expansion, leading to more potent in vivo activity. This enhanced CD70-targeted CAR is a promising candidate for further clinical development.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Leucemia Mieloide Aguda/terapia , Linfocitos T
20.
Neurosurg Focus ; 52(2): E6, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35104795

RESUMEN

Immunotherapy has emerged as a promising approach for treating aggressive solid tumors, even within the CNS. Mutation in the metabolic gene isocitrate dehydrogenase 1 (IDH1) represents not only a major glioma defining biomarker but also an attractive therapeutic neoantigen. As patients with IDH-mutant glioma enter early-phase vaccine and immune checkpoint inhibitor clinical trials, there is emerging evidence that implicates the oncometabolite, 2-hydroxyglutarate (2HG), generated by the neomorphic activity of mutant IDH, as a potential barrier to current immunotherapeutic approaches. Here, the authors review the immunomodulatory and immunosuppressive roles of 2HG within the unique IDH-mutant glioma tumor immune microenvironment and discuss promising immunotherapeutic approaches currently being investigated in preclinical models.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Inmunoterapia , Isocitrato Deshidrogenasa/genética , Mutación/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...