Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Exp Mol Med ; 56(7): 1552-1559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956299

RESUMEN

It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders. In this review, we delineate the regulation of metabolic pathways for BCAAs at the tissue-specific level and summarize recent findings regarding the role of BCAAs in the control of metabolic health and disease in mammals.


Asunto(s)
Aminoácidos de Cadena Ramificada , Enfermedades Metabólicas , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Envejecimiento/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
2.
Metabolism ; 157: 155938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795769

RESUMEN

BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.


Asunto(s)
Arginina , Lipogénesis , Receptores X del Hígado , Hígado , Proteína-Arginina N-Metiltransferasas , Lipogénesis/genética , Lipogénesis/fisiología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Animales , Ratones , Metilación , Hígado/metabolismo , Arginina/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Masculino , Humanos , Hepatocitos/metabolismo , Ratones Endogámicos C57BL , Células Hep G2 , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
3.
Nat Aging ; 3(8): 982-1000, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488415

RESUMEN

Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.


Asunto(s)
Tejido Adiposo , Enfermedades Metabólicas , Ratones , Animales , Tejido Adiposo/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Adipocitos/metabolismo , Enfermedades Metabólicas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
4.
Nat Commun ; 8(1): 1878, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192248

RESUMEN

Liver plays a crucial role in controlling energy homeostasis in mammals, although the exact mechanism by which it influences other peripheral tissues has yet to be addressed. Here we show that Creb regulates transcriptional co-activator (Crtc) 2 is a major regulator of whole-body energy metabolism. Crtc2 liver-specific knockout lowers blood glucose levels with improved glucose and insulin tolerance. Liver-specific knockout mice display increased energy expenditure with smaller lipid droplets in adipose depots. Both plasma and hepatic Fgf21 levels are increased in Crtc2 liver-specific knockout mice, as a result of the reduced miR-34a expression regulated by Creb/Crtc2 and the induction of Sirt1 and Pparα. Ectopic expression of miR-34a reverses the metabolic changes in knockout liver. We suggest that Creb/Crtc2 negatively regulates the Sirt1/Pparα/Fgf21 axis via the induction of miR-34a under diet-induced obesity and insulin-resistant conditions.


Asunto(s)
Metabolismo Energético , Hepatocitos/metabolismo , Resistencia a la Insulina , MicroARNs/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Animales , Glucemia/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factores de Crecimiento de Fibroblastos , Células HEK293 , Células Hep G2 , Humanos , Hígado/metabolismo , Ratones Noqueados , PPAR alfa/metabolismo , Sirtuina 1/metabolismo
5.
Diabetes ; 65(1): 62-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26340929

RESUMEN

The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB ß-deficient (PKBß(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ingestión de Alimentos/genética , Gluconeogénesis/genética , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Dieta Alta en Grasa , Expresión Génica , Glucagón , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Hipoglucemiantes/farmacología , Insulina/farmacología , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt/genética , Receptor de Insulina/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...