Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(8): e2208996, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470580

RESUMEN

Ceria (CeO2 ) is one of the most extensively used rare earth oxides. Recently, it has been used as a support material for metal catalysts for electrochemical energy conversion. However, to date, the nature of metal/CeO2 interfaces and their impact on electrochemical processes remains unclear. Here, a Cu-CeO2 nanorod electrochemical CO2 reduction catalyst is presented. Using operando analysis and computational techniques, it is found that, on the application of a reductive electrochemical potential, Cu undergoes an abrupt change in solubility in the ceria matrix converting from less stable randomly dissolved single atomic Cu2+ ions to (Cu0 ,Cu1+ ) nanoclusters. Unlike single atomic Cu, which produces C1 products as the main product during electrochemical CO2 reduction, the coexistence of (Cu0 ,Cu1+ ) clusters lowers the energy barrier for C-C coupling and enables the selective production of C2+ hydrocarbons. As a result, the coexistence of (Cu0 ,Cu1+ ) in the clusters at the Cu-ceria interface results in a C2+ partial current density/unit Cu weight 27 times that of a corresponding Cu-carbon catalyst under the same conditions.

2.
ACS Appl Mater Interfaces ; 12(39): 43720-43727, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32877165

RESUMEN

Cu-based p-type semiconducting oxides have been sought for water-reduction photocathodes to enhance the energy-conversion efficiency in photoelectrochemical cells. CuBi2O4 has recently attracted notable attention as a new family of p-type oxides, based on its adequate band gap. Although the identification of a major defect structure should be the first step toward understanding the electronic conduction behavior, no direct experimental analysis has been carried out yet. Using atomic-scale scanning transmission electron microscopy together with chemical probing, we identify a substantial amount of BiCu-CuBi antisite intermixing as a major point-defect type. Our density functional theory calculations also show that antisite BiCu can seriously hinder the hole-polaron hopping between Cu, in agreement with lower conductivity and a larger thermal activation barrier under a higher degree of intermixing. These findings highlight the value of the direct identification of point defects for a better understanding of electronic properties in complex oxides.

3.
Small ; 16(39): e2002429, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32686276

RESUMEN

To develop strategies for efficient photo-electrochemical water-splitting, it is important to understand the fundamental properties of oxide photoelectrodes by synthesizing and investigating their single-crystal thin films. However, it is challenging to synthesize high-quality single-crystal thin films from copper-based oxide photoelectrodes due to the occurrence of significant defects such as copper or oxygen vacancies and grains. Here, the CuBi2 O4 (CBO) single-crystal thin film photocathode is achieved using a NiO template layer grown on single-crystal SrTiO3 (STO) (001) substrate via pulsed laser deposition. The NiO template layer plays a role as a buffer layer of large lattice mismatch between CBO and STO (001) substrate through domain-matching epitaxy, and forms a type-II band alignment with CBO, which prohibits the transfer of photogenerated electrons toward bottom electrode. The photocurrent densities of the CBO single-crystal thin film photocathode demonstrate -0.4 and -0.7 mA cm-2 at even 0 VRHE with no severe dark current under illumination in a 0.1 m potassium phosphate buffer solution without and with H2 O2 as an electron scavenger, respectively. The successful synthesis of high-quality CBO single-crystal thin film would be a cornerstone for the in-depth understanding of the fundamental properties of CBO toward efficient photo-electrochemical water-splitting.

4.
Chem Commun (Camb) ; 55(83): 12447-12450, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31528870

RESUMEN

Harvesting sustainable hydrogen through water-splitting requires a durable photoelectrode to achieve high efficiency and long lifetime. Dense, uniform CuBi2O4/NiO thin film photocathodes grown by pulsed laser deposition achieved photocurrent density over 1.5 mA cm-2 at 0.4 VRHE and long-term chronoamperometric stability for over 8 hours.

5.
Opt Express ; 27(4): A171-A183, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876070

RESUMEN

We present a polymer-assisted spin coating process used to fabricate high-density p-type CuBi2O4 (CBO) thin films. Polyvinylpyrrolidone (PVP) is introduced in the precursor solutions in order to promote uniform nucleation of CBO and prevent formation of the secondary phase, such as Bi2O3, by Bi3+ ion hydrolysis. Slow PVP molecule decomposition during the two-step annealing process, with a 1 M/0.5 M (Bi3+/Cu2+) metal ion concentration, enables optimum contact at the CBO/substrate interface by avoiding formation of voids. This resulted in the formation of non-porous, compact CBO thin films. The highest current density of the photoelectrochemical (PEC) oxygen reduction reaction is obtained with non-porous, compact CBO thin films due to unimpeded charge transport through the CBO bulk, as well as across the interface. When combined with silicon, the high-density CBO thin film investigated in this work is expected to provide new PEC tandem cell options to use for solar applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...