Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195367

RESUMEN

Anisotropic bulk magnets of ThMn12-type SmFe10V2 with a high coercivity (Hc) were successfully fabricated. Powders with varying particle sizes were prepared using the ball milling process, where the particle size was controlled with milling time. A decrease in Hc occurred in the heat-treated bulk pressed from large-sized powders, while heavy oxidation excessively occurred in small powders, leading to the decomposition of the SmFe10V2 (1-12) phase. The highest Hc of 8.9 kOe was achieved with powders ball-milled for 5 h due to the formation of the grain boundary phase. To improve the maximum energy product ((BH)max), which is only 2.15 MGOe in the isotropic bulk, anisotropic bulks were prepared using the same powders. The easy alignment direction, confirmed by XRD and EBSD measurements, was <002>. Significant enhancements were observed, with saturation magnetization (Ms) increasing from 59 to 79 emu/g and a remanence ratio (Mr/Ms) of 83.7%. (BH)max reaching 7.85 MGOe. For further improvement of magnetic properties, controlling oxidation is essential to form a uniform grain boundary phase and achieve perfect alignment with small grain size.

2.
Materials (Basel) ; 15(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35329579

RESUMEN

High-pressure torsion (HPT) is a severe plastic deformation technique where a sample is subjected to torsional shear straining under a high hydrostatic pressure. The HPT method is usually employed to create ultrafine-grained nano-structures, making it widely used in processing many kinds of materials such as metals, glasses, biological materials, and organic compounds. Most of the published HPT results have been focused on the microstructural development of non-magnetic materials and their influence on the mechanical properties. The HPT processing of magnetic materials and its influence on the structural and magnetic properties have attracted increasing research interest recently. This review describes the application of HPT to magnetic materials and our recent experimental results on Mn3O4, Mn4N, and MnAl-based alloys. After HPT, most magnetic materials exhibit significantly reduced grain size and substantially enhanced coercivity.

3.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807262

RESUMEN

α″-Fe16N2 nanomaterials with a shape anisotropy for high coercivity performance are of interest in potential applications such as rare-earth-free permanent magnets, which are difficult to synthesize in situ anisotropic growth. Here, we develop a new and facile one-pot microemulsion method with Fe(CO)5 as the iron source and tetraethylenepentamine (TEPA) as the N/C source at low synthesis temperatures to fabricate carbon-coated tetragonal α″-Fe16N2 nanocones. Magnetocrystalline anisotropy energy is suggested as the driving force for the anisotropic growth of α″-Fe16N2@C nanocones because the easy magnetization direction of tetragonal α″-Fe16N2 nanocrystals is along the c axis. The α″-Fe16N2@C nanocones agglomerate to form a fan-like microstructure, in which the thin ends of nanocones direct to its center, due to the magnetostatic energy. The lengths of α″-Fe16N2@C nanocones are ~200 nm and the diameters vary from ~10 nm on one end to ~40 nm on the other end. Carbon shells with a thickness of 2-3 nm protect α″-Fe16N2 nanocones from oxidation in air atmosphere. The α″-Fe16N2@C nanocones synthesized at 433 K show a room-temperature saturation magnetization of 82.6 emu/g and a coercive force of 320 Oe.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207590

RESUMEN

Rare-earth-free permanent magnets have attracted considerable attention due to their favorable properties and applicability for cost-effective, high-efficiency, and sustainable energy devices. However, the magnetic field annealing process, which enhances the performance of permanent magnets, needs to be optimized for different magnetic fields and phases. Therefore, we investigated the effect of composition on the crystallization of amorphous MnBi to the ferromagnetic low-temperature phase (LTP). The optimal compositions and conditions were applied to magnetic field annealing under 2.5 T for elemental Mg- and Sb/Mg pair-substituted MnBi. The optimum MnBi composition for the highest purity LTP was determined to be Mn56Bi44, and its maximum energy product, (BH)max, was 5.62 MGOe. The Mg-substituted MnBi exhibited enhanced squareness (Mr/Ms), coercivity (Hc), and (BH)max values up to 0.8, 9659 Oe, and 5.64 MGOe, respectively, whereas the same values for the Sb/Mg pair-substituted MnBi were 0.76, 7038 Oe, and 5.60 MGOe, respectively. The substitution effects were also investigated using first-principles calculations. The density of states and total magnetic moments of Mn16Bi15Mg and Mn16Bi15Sb were similar to those of pure Mn16Bi16. Conversely, the Sb-substituted MnBi resulted in a dramatic enhancement in the anisotropy constant (K) from a small negative value (-0.85 MJ/m3) to a large positive value (6.042 MJ/m3).

5.
Nanoscale ; 12(19): 10834-10841, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32396587

RESUMEN

ε-Iron nitrides with the general formula ε-Fe3N1+x (-0.40 < x < 0.48) have been widely studied due to their interesting magnetism. However, the phase diagram of the Fe-N binary system indicates the absence of monophasic ε-Fe3N1+x (x < 0) compounds that are stable below their synthetic temperatures. Here, ε-Fe3N1+x (-0.12 ≤ x ≤ -0.01) nanoparticles with excellent thermal stability and magnetic properties were synthesized by a simple chemical solution method. The ε-Fe3N1+x nanoparticles with space group P6322 have excellent oxidation resistance due to a carbon shell with a thickness of 2-3 nm. NPD refinements suggest that the ε-Fe3N1+x nanoparticles possess a highly ordered arrangement of N atoms and their magnetic moments align parallel to the c axis. The Curie temperature (TC) and room temperature saturation magnetization (MS) increase with decreasing N content, which results in record-high TC (632 K) and MS (169.2 emu g-1) at x = -0.12, much higher than the magnetic properties of the corresponding bulk materials. The significant enhancements in the intrinsic magnetic properties and thermal stability of ε-Fe3N1+x are ascribed to chemically engineering the stoichiometry and N occupancy from the disordered to the ordered site.

6.
Nanomaterials (Basel) ; 8(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558293

RESUMEN

The magnetization of most materials decreases with increasing temperature due to thermal deterioration of magnetic ordering. Here, we show that Mn4C phase can compensate the magnetization loss due to thermal agitation. The Mn⁻C nanoparticles containing ferrimagnetic Mn4C and other Mn⁻C/Mn-O phases were prepared by using the traditional arc-discharge method. A positive temperature coefficient of magnetization (~0.0026 Am² kg-1 K-1) and an exchange bias up to 0.05 T were observed in the samples. We ascribe the exchange bias to the co-existence of ferrimagnetic Mn4C/Mn3O4 and antiferromagnetic α-Mn(C)/MnO phases. The positive temperature coefficient of magnetization of the samples was ascribed to the presence of Mn4C phase, which is considered as a Néel's P-type ferrimagnet.

7.
Materials (Basel) ; 10(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858231

RESUMEN

The phase transformation in two modes, including both displacive and massive growth of τ-phase from ε-MnAl(C), was observed by in situ transmission electron microscopy. The exact temperature range for different phase transformation modes was determined by magnetic measurements. The displacive growth of ε→τ in Mn54Al46 (or Mn54Al46C2.44) occurs at temperatures below 650 K (or 766 K), above which both modes coexist. One-third or less of the ε-phase can be transformed into τ-phase via displacive mode while the remaining two-thirds or more via massive mode. In bulk τ-phase, most τ-nanocrystals formed via displacive mode are distributed in the matrix of large τ-grains that formed via massive mode. The typical massive growth rate of the τ-phase is 8-60 nm/s, while the displacive growth rate is low. A more complete understanding of the ε→τ phase transformations in the MnAl-based magnets was provided in this work, based on which the annealing process for ε→τ was optimized and thus high purity τ-phase with high saturation magnetization was obtained.

8.
Sci Rep ; 7(1): 4960, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694435

RESUMEN

We present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (H ci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. However, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm2Co7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe12O19/Fe-Co composites for characterization of their σ s and H ci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict the maximum energy product (BH)max of hard/soft composite.

9.
J Nanosci Nanotechnol ; 12(4): 3438-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849141

RESUMEN

We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.

10.
J Nanosci Nanotechnol ; 11(1): 249-55, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446435

RESUMEN

Micropart fabrication via 17-4 PH stainless nanopowder injection molding was investigated. The nanopowder was mixed with a binder that was based on wax to produce a feedstock composed of 45% powder and binder (the powder load). Initially, the fit and proper test was done before the micropart was made by making some bars of green samples, which the properties were examined after the sintering process. The examination involved the mechanical properties such as the porosity, hardness, and some of metallurgical aspects, such as the second-phase formation and the final compound after the sintering. The results showed that utilizing 17-4 PH stainless nanopowder is promising for micropart fabrication since it can form a nearly full-density sintered sample with a low porosity and good toughness, and can provide a smooth surface finish. After this, the investigations followed with the injection of the feedstock into the PDMS micromold that was formed by the nickel pattern from the X-Ray LIGA process. The green samples successfully produced a high-aspect-ratio sample with a thickness of up to 1 mm and an aspect ratio of 15 in the microchannel part. Then the green samples were sintered at 1,300 degrees C for 2 h, since from the initial test, they showed optimum parameters with nearly full density, low porosity, and a high degree of hardness. The research shows the excellent results of the application of the 17-4 PH stainless nanopowder to micropart fabrication.

11.
Nanotechnology ; 20(50): 505603, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19907068

RESUMEN

We have investigated the effects of Pb2+ addition on the morphological development of CdSe nanocrystals. We show that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals to branched rods with high aspect ratio. The branched nanocrystals are mainly composed of wurzite phase grown along the [001] direction and the length of rods in each branched nanocrystal can be increased by increasing the amount of Pb2+ addition to accelerate the anisotropic growth of the nanocrystals. The luminescence, however, mostly arises from trap-related recombination and is significantly red-shifted by Pb2+ addition. Surface passivations of the branched nanocrystals with ZnS were proved to be effective in eliminating trap emission and enhancing band-edge emission, leading to a larger quantum yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...