Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1271508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822941

RESUMEN

Introduction: The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods: Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results: Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion: These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Animales , Ratones , Humanos , SARS-CoV-2 , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Antiviral Res ; 212: 105576, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870394

RESUMEN

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity. Compared with the parental mAbs or mAb cocktail, the K202.B antibody showed superior neutralizing potential against a variety of SARS-CoV-2 variants in vitro. Furthermore, structural analysis of bispecific antibody-antigen complexes using cryo-electron microscopy revealed the mode of action of K202.B complexed with a fully open three-RBD-up conformation of SARS-CoV-2 trimeric spike proteins by simultaneously interconnecting two independent epitopes of the SARS-CoV-2 RBD via inter-protomer interactions. Intravenous monotherapy using K202.B exhibited potent neutralizing activity in SARS-CoV-2 wild-type- and B.1.617.2 variant-infected mouse models, without significant toxicity in vivo. The results indicate that this novel approach of development of immunoglobulin G4-based bispecific antibody from an established human recombinant antibody library is likely to be an effective strategy for the rapid development of bispecific antibodies, and timely management against fast-evolving SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Animales , Ratones , Humanos , SARS-CoV-2/metabolismo , Anticuerpos Antivirales , Anticuerpos Biespecíficos/farmacología , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983085

RESUMEN

Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Biblioteca de Péptidos , Humanos , Leucocitos Mononucleares , Herpesvirus Humano 4 , Anticuerpos Monoclonales/genética , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Biomedicines ; 10(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552031

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in an ongoing global pandemic crisis, caused by the life-threatening illness coronavirus disease 2019 (COVID-19). Thus, the rapid development of monoclonal antibodies (mAbs) to cope with COVID-19 is urgently necessary. In this study, we used phage display to develop four human mAbs specific to the receptor-binding domain (RBD) of SARS-CoV-2. Our intensive in vitro functional analyses demonstrated that K102.1, an anti-SARS-CoV-2 RBD-specific mAb, exerted potent neutralizing activity against pseudoviral and live viral infection and the interaction between SARS-CoV-2 RBD and human angiotensin-converting enzyme 2. Monotherapy with K102.1 also revealed the therapeutic potential against SARS-CoV-2 infection in vivo. Further, this study developed a sandwich enzyme-linked immunosorbent assay with a non-competing mAb pair, K102.1 and K102.2, that accurately detected the RBDs of SARS-CoV-2 wild-type and variants with high sensitivity in the picomolar range. These findings suggest that the phage-display-based mAb selection from an established antibody library may be an effective strategy for the rapid development of mAbs against the constantly evolving SARS-CoV-2.

5.
Transgenic Res ; 31(3): 381-389, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461371

RESUMEN

The SAMS (S-adenosylmethionine synthetase) gene is known to play an important role in the mechanism of cold resistance, as overexpression of this gene results in phenotypic changes in T1-generation transgenic plants. Accordingly, this study was conducted to test the expression of the MsSAMS gene in T2-generation transgenic plants and to investigate the resistance of these plants and the function of the transgene in response to various environmental stresses. For the morphological analysis of T2-generation transgenic plants overexpressing the MsSAMS gene, observations using scanning electron microscopy (SEM) were performed. T2-generation transgenic plants were obtained by planting a total of 5 lines, and their characteristics were tested by comparisons with those of the control. SEM revealed that the thickest leaves were produced by the T6 transgenic line-161.24 ± 8.05 µm. The number of stomata ranged from 20.00 ± 2.65 to 34.00 ± 1.00 in the T2-generation transgenic plants, but the control had more stomata. Resistance to various factors, such as low temperature, drought, and oxidative stress, in the T2-generation transgenic plants was also confirmed. Under cold-stress conditions, the T6 transgenic line presented the lowest value (22.73%) of ion leakage, and under drought-stress conditions, compared with the control, the transgenic lines presented lower ion leakage after being treated with various concentrations of mannitol. Even under oxidative-stress conditions, the T2-generation transgenic plants presented ion leakage levels that were 32.91 ± 4.24 to 48.33 ± 3.54% lower than those of the control after treatment with various concentrations of methyl viologen. Regarding SAMS enzyme activity, as the duration of cold treatment increased, the activity in the transgenic plants tended to decrease and then increase. During 48 h of cold treatment, the control showed a decrease in SAM content, while the T2-generation transgenic plants presented an increase in SAM content, from 13.58 ± 1.04 to 22.75 ± 1.95 mg protein/g FW. The results suggest that the MsSAMS gene may be important to the mechanisms of resistance to oxidative and drought stresses in addition to its previously known association with cold resistance. Based on these results, it was suggested that the MsSAMS gene, whose expression is induced by cold stress, can serve as a marker of various responses to environmental stresses, because resistance to cold damage and various environmental stresses are stably inherited in the T2 generation.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Frío , Respuesta al Choque por Frío/genética , Sequías , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
6.
Acta Otolaryngol ; 140(5): 383-386, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32049552

RESUMEN

Background: The potential etiology of idiopathic sudden sensorineural hearing loss (ISSNHL) is cochlear ischemia, therefore, hyperbaric oxygen (HBO) therapy is a promising treatment, particularly in patients with severe hearing loss (≥70 dB).Aims/objectives: To evaluate the efficacy of HBO therapy.Material and methods: The medical records of patients diagnosed with ISSNHL were retrospectively reviewed (≥70 dB). Patients received HBO therapy 14 times in addition to systemic and intratympanic steroid therapy (HBO group), or systemic and intratympanic steroid therapy only (control group).Results: Data from a total of 82 patients (83 ears) were included in the analysis; 37 (38 ears) in the HBO group and 45 (45 ears) in the control group. After 2 weeks' treatment, hearing was significantly improved in the HBO group versus controls (weighted four-frequency average 28.1 ± 26.9 dB versus 14.8 ± 13.5 dB, respectively; p < .05), particularly in the low frequency groups (0.5 kHz, 1 kHz, 2 kHz; p < .05).Conclusion and significance: These data demonstrate that HBO therapy is an effective initial treatment option for patients with ISSNHL suffering from severe hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/terapia , Pérdida Auditiva Súbita/terapia , Oxigenoterapia Hiperbárica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
7.
PLoS One ; 10(7): e0132328, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161646

RESUMEN

Sapovirus (SaV), a virus residing in the intestines, is one of the important causes of gastroenteritis in human beings. Human SaV genomes are classified into various genogroups and genotypes. Whole-genome analysis and phylogenetic analysis of ROK62, the SaV isolated in South Korea, were carried out. The ROK62 genome of 7429 nucleotides contains 3 open-reading frames (ORF). The genotype of ROK62 is SaV GI-1, and 94% of its nucleotide sequence is identical with other SaVs, namely Manchester and Mc114. Recently, SaV infection has been on the rise throughout the world, particularly in countries neighboring South Korea; however, very few academic studies have been done nationally. As the first whole-genome sequence analysis of SaV in South Korea, this research will help provide reference for the detection of recombination, tracking of epidemic spread, and development of diagnosis methods for SaV.


Asunto(s)
Genoma Viral , Sapovirus/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Femenino , Humanos , Lactante , Sistemas de Lectura Abierta/genética , Filogenia , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...