Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 334: 122020, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553219

RESUMEN

Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Hidrogeles/farmacología , Hidrogeles/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carboximetilcelulosa de Sodio/química , Antibacterianos/química , Nanoestructuras/química , Cicatrización de Heridas
2.
Tissue Eng Regen Med ; 20(1): 143-154, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482140

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are used for tissue regeneration due to their wide differentiation capacity and anti-inflammatory effects. Extracellular vesicles (EVs) derived from MSCs are also known for their regenerative effects as they contain nucleic acids, proteins, lipids, and cytokines similar to those of parental cells. There are several studies on the use of MSCs or EVs for tissue regeneration. However, the combinatorial effect of human MSCs (hMSCs) and EVs is not clear. In this study, we investigated the combinatorial effect of hMSCs and EVs on cartilage regeneration via co-encapsulation in a hyaluronic-acid (HA)-based hydrogel. METHODS: A methacrylic-acid-based HA hydrogel was prepared to encapsulate hMSCs and EVs in hydrogels. Through in vitro and in vivo analyses, we investigated the chondrogenic potential of the HA hydrogel-encapsulated with hMSCs and EVs. RESULTS: Co-encapsulation of hMSCs with EVs in the HA hydrogel increased the chondrogenic differentiation of hMSCs and regeneration of damaged cartilage tissue compared with that of the HA hydrogel loaded with hMSCs only. CONCLUSION: Co-encapsulation of hMSCs and EVs in the HA hydrogel effectively enhances cartilage tissue regeneration due to the combinatorial therapeutic effect of hMSCs and EVs. Thus, in addition to cartilage tissue regeneration for the treatment of osteoarthritis, this approach would be a useful strategy to improve other types of tissue regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Hidrogeles/farmacología , Cartílago/metabolismo , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...