Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Theor Biol ; 594: 111914, 2024 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111541

RESUMEN

We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically administered and withdrawn to give patients relief from an arduous drug therapy. Numerous studies have been conducted to find better STI treatment strategies using various computational tools with mathematical models of HIV infection. In this paper, we leverage a modified version of the double deep Q network with prioritized experience replay to improve the performance of classic deep learning algorithms. Numerical simulation results show that our methodology produces significantly more optimal cost values for shorter treatment periods compared to other recent studies. Furthermore, our proposed algorithm performs well in one-day segment scenarios, whereas previous studies only reported results for five-day segment scenarios.


Asunto(s)
Aprendizaje Profundo , Infecciones por VIH , Humanos , Infecciones por VIH/tratamiento farmacológico , Algoritmos , Fármacos Anti-VIH/uso terapéutico , Simulación por Computador , Esquema de Medicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...