Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673549

RESUMEN

Background: Large-to-massive rotator cuff tears (LMRCTs) present challenges in achieving successful repair due to factors such as muscle atrophy and tendon retraction. Arthroscopic rotator cuff repair (ARCR) with reinforcement techniques like superior capsule reconstruction (SCR) or patch graft augmentation (PGA) has emerged as a less invasive option to improve shoulder joint stability and prevent retear. This study aimed to compare the clinical and radiological outcomes of SCR and PGA as reinforcement techniques for the arthroscopic repair of LMRCTs. Methods: A single-center retrospective study was conducted on patients undergoing LMRCT repair between January 2019 and December 2021. Patients were divided into two groups: those receiving SCR (Group 1) and those receiving PGA (Group 2). Various clinical parameters including range of motion, functional scores, and radiological assessments were evaluated preoperatively and six months postoperatively. Results: Both SCR and PGA techniques demonstrated significant improvements in the range of motion and clinical scores postoperatively. However, Group 2 showed higher postoperative SST and UCLA scores compared to Group 1. Radiologically, there was a slightly higher retear rate in Group 2, although this was not statistically significant. Group 2 also had a shorter mean duration of surgery compared to Group 1. Conclusions: In the arthroscopic repair of LMRCTs, both SCR and PGA techniques exhibit favorable clinical and radiological outcomes. Despite the simplicity of PGA compared to SCR, it offers comparable results with a shorter surgical duration, making it a feasible reinforcement option for surgeons.

2.
Small ; 19(16): e2206238, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36617520

RESUMEN

SiOx is a promising next-generation anode material for lithium-ion batteries. However, its commercial adoption faces challenges such as low electrical conductivity, large volume expansion during cycling, and low initial Coulombic efficiency. Herein, to overcome these limitations, an eco-friendly in situ methodology for synthesizing carbon-containing mesoporous SiOx nanoparticles wrapped in another carbon layers is developed. The chemical reactions of vinyl-terminated silanes are designed to be confined inside the cationic surfactant-derived emulsion droplets. The polyvinylpyrrolidone-based chemical functionalization of organically modified SiO2 nanoparticles leads to excellent dispersion stability and allows for intact hybridization with graphene oxide sheets. The formation of a chemically reinforced heterointerface enables the spontaneous generation of mesopores inside the thermally reduced SiOx nanoparticles. The resulting mesoporous SiOx -based nanocomposite anodes exhibit superior cycling stability (≈100% after 500 cycles at 0.5 A g-1 ) and rate capability (554 mAh g-1 at 2 A g-1 ), elucidating characteristic synergetic effects in mesoporous SiOx -based nanocomposite anodes. The practical commercialization potential with a significant enhancement in initial Coulombic efficiency through a chemical prelithiation reaction is also presented. The full cell employing the prelithiated anode demonstrated more than 2 times higher Coulombic efficiency and discharge capacity compared to the full cell with a pristine anode.

3.
J Am Chem Soc ; 143(24): 9169-9176, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34111352

RESUMEN

Although often overlooked in anode research, the anode's initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiOx represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li-arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+-anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg-1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries.

4.
Angew Chem Int Ed Engl ; 59(34): 14473-14480, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32400120

RESUMEN

Prelithiation is of great interest to Li-ion battery manufacturers as a strategy for compensating for the loss of active Li during initial cycling of a battery, which would otherwise degrade its available energy density. Solution-based chemical prelithiation using a reductive chemical promises unparalleled reaction homogeneity and simplicity. However, the chemicals applied so far cannot dope active Li in Si-based high-capacity anodes but merely form solid-electrolyte interphases, leading to only partial mitigation of the cycle irreversibility. Herein, we show that a molecularly engineered Li-arene complex with a sufficiently low redox potential drives active Li accommodation in Si-based anodes to provide an ideal Li content in a full cell. Fine control over the prelithiation degree and spatial uniformity of active Li throughout the electrodes are achieved by managing time and temperature during immersion, promising both fidelity and low cost of the process for large-scale integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...