RESUMEN
Acquired resistance to chemotherapy is a major challenge in the treatment of triple-negative breast cancer (TNBC). Despite accumulated evidence showing microRNA-21 (miR-21) as a vital regulator of tumor progression, the role of miR-21 in modulating the multidrug resistance of TNBC remains obscure. In this study, we demonstrate that miR-21 affects chemoresistance in 4T1 TNBC cells in response to doxorubicin (DOX) by regulating the P-glycoprotein (P-gp) drug efflux pump. Overexpression of miR-21 in the 4T1 cells markedly reduced their sensitivity to DOX, impeding DOX-promoted cell death. We employed anti-miR-21 oligonucleotide conjugated with a PD-L1-binding peptide (P21) for targeted delivery to 4T1 tumor cells. The selective down-regulation of miR-21 in 4T1 TNBC led to the reversal of P-gp-mediated DOX resistance by up-regulating phosphatase and tensin homolog (PTEN). Our study highlights that miR-21 is a key regulator of drug efflux pumps in TNBC, and targeting miR-21 could enhance DOX sensitivity, offering a potential therapeutic option for patients with DOX-resistant TNBC.
RESUMEN
BACKGROUND: Rheumatoid arthritis (RA) affects roughly 1% of the population and commonly involves the lungs. Of lung involvement in RA, interstitial lung disease (ILD) is well known; however, airways disease in RA is relatively understudied. RESEARCH QUESTION: What are the baseline airways abnormalities in a prospective cohort of patients with RA based on pulmonary function testing (PFT) results, high-resolution CT (HRCT) scans, and computational imaging analysis and are there associations between these abnormalities and respiratory symptoms? STUDY DESIGN AND METHODS: In this single-center study, 188 patients with RA without a clinical diagnosis of ILD underwent HRCT imaging and PFT. Radiologists assessed HRCT scans for airway abnormalities. Computational imaging via VIDA Vision software and in-house quantitative CT imaging analysis was applied to 147 HRCT scans to quantify airway abnormalities. RESULTS: Airways obstruction (FEV1 to FVC ratio < 0.7) was present in 20.7% of patients and was associated with older age, male sex, and higher smoking rate. Radiologists identified airway abnormalities in 61% of patients: 55% had bronchial wall thickening, 12% had bronchiectasis, and 5% had mosaic attenuation. These airways findings were associated with older age; male sex; lower FEV1, FVC, and FEV1 to FVC ratio; and higher rates of rheumatoid factor positivity. Prespecified quantitative CT scan metrics (wall thickening percentage and emphysema percentage) correlated with obstruction in PFT results and more severe respiratory symptoms, including shortness of breath and cough. INTERPRETATION: High rates of airways abnormalities were found in this prospective RA cohort based on 3 methods of detection. Significant associations were identified between quantitative CT scan measures and respiratory symptoms. Airways disease may be an underrecognized extra-articular manifestation of RA and quantitative CT imaging may be a sensitive method to detect the clinical impact on respiratory symptoms.
RESUMEN
Rationale: Oral chemotherapy has been emerging as a hopeful therapeutic regimen for the treatment of various cancers because of its high safety and convenience, lower costs, and high patient compliance. Despite the current advancements in nanoparticle-mediated drug delivery, numerous anticancer drugs susceptible to the hostile gastrointestinal (GI) environment exhibit poor permeability across the intestinal epithelium, rendering them ineffective in providing therapeutic benefits. In this paper, we focus on harnessing milk-derived extracellular vesicles (mEVs) for gut-to-tumor oral drug delivery by leveraging their high bioavailability. Methods: The tumor-activated prodrug (a cathepsin B-specific cleavable FRRG peptide and doxorubicin, FDX) is used as a model drug and is complexed with mEVs, resulting in FDX@mEVs. To verify stability in the GI tract, prolonged intestinal retention, and enhanced trans-epithelial transport via neonatal Fc receptor (FcRn)-mediated transcytosis, intestinal transport evaluation is conducted using in vitro intestinal barrier model and mouse model. Results: FDX@mEVs form a stable nanostructure with an average diameter of 131.1 ± 70.5 nm and complexation processes do not affect the inherent properties of FDX. Orally administered FDX@mEVs show significantly improved bioavailability compared to uncomplexed FDX via FcRn-mediated transcytosis of mEVs resulting in increased tumor accumulation of FDX in tumor-bearing mouse model. Conclusions: After oral administration of FDX@mEVs, it is observed that remarkable antitumor efficacy in colon tumor-bearing mice without adverse effects, such as body weight loss, liver/kidney dysfunction, and cardiotoxicity.
Asunto(s)
Doxorrubicina , Vesículas Extracelulares , Profármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Animales , Profármacos/administración & dosificación , Profármacos/farmacología , Ratones , Vesículas Extracelulares/metabolismo , Administración Oral , Humanos , Leche/química , Sistemas de Liberación de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Disponibilidad Biológica , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Nanopartículas/químicaRESUMEN
Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.
Asunto(s)
Ritmo Circadiano , Núcleo Dorsal del Rafe , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Serotonina , Triptófano Hidroxilasa , Animales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Núcleo Dorsal del Rafe/metabolismo , Serotonina/metabolismo , Serotonina/biosíntesis , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ratones , Masculino , Afecto/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Depresión/metabolismoRESUMEN
Error in Figure [...].
RESUMEN
Rationale: Growing evidence has demonstrated that miRNA-21 (miR-21) upregulation is closely associated with tumor pathogenesis. However, the mechanisms by which miR-21 inhibition modulates the immunosuppressive tumor microenvironment (TME) and improves tumor sensitivity to immune checkpoint blockade therapies remain largely unexplored. In this study, we demonstrate the precise delivery of anti-miR-21 using a PD-L1-targeting peptide conjugate (P21) to the PD-L1high TME. Methods: Investigating miR-21 inhibition mechanisms involved conducting quantitative real-time PCR, western blot, flow cytometry, and confocal microscopy analyses. The antitumor efficacy and immune profile of P21 monotherapy, or combined with anti-PD-L1 immune checkpoint inhibitors, were assessed in mouse models bearing CT26.CL25 tumors and 4T1 breast cancer. Results Inhibition of oncogenic miR-21 in cancer cells by P21 efficiently activates tumor suppressor genes, inducing autophagy and endoplasmic reticulum stress. Subsequent cell-death-associated immune activation (immunogenic cell death) is initiated via the release of damage-associated molecular patterns. The in vivo results also illustrated that the immunogenic cell death triggered by P21 could effectively sensitize the immunosuppressive TME. That is, P21 enhances CD8+ T cell infiltration in tumor tissues by conferring immunogenicity to dying cancer cells and promoting dendritic cell maturation. Meanwhile, combining P21 with an anti-PD-L1 immune checkpoint inhibitor elicits a highly potent antitumor effect in a CT26.CL25 tumor-bearing mouse model and 4T1 metastatic tumor model. Conclusions: Collectively, we have clarified a miR-21-related immunogenic cell death mechanism through the precise delivery of anti-miR-21 to the PD-L1high TME. These findings highlight the potential of miR-21 as a target for immunotherapeutic interventions.
Asunto(s)
Antígeno B7-H1 , Muerte Celular Inmunogénica , Inmunoterapia , MicroARNs , Microambiente Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Inmunoterapia/métodos , Femenino , Ratones Endogámicos BALB C , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genéticaRESUMEN
Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2â¯% and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97â¯%, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7â¯% compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.
Asunto(s)
Células Dendríticas , Ratones Endogámicos C57BL , Animales , Células Dendríticas/inmunología , Ratones , Péptidos de Penetración Celular , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/patología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Femenino , Línea Celular Tumoral , Proliferación Celular , Inmunoterapia/métodos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Proteínas de la Matriz Extracelular/metabolismo , Metástasis de la NeoplasiaRESUMEN
Naturally occurring homoisoflavonoids isolated from some Liliaceae plants have been reported to have diverse biological activities (e.g., antioxidant, anti-inflammatory, and anti-angiogenic effects). The exact mechanism by which homoisoflavonones exert anti-neuroinflammatory effects against activated microglia-induced inflammatory cascades has not been well studied. Here, we aimed to explore the mechanism of homoisoflavonoid SH66 having a potential anti-inflammatory effect in lipopolysaccharide (LPS)-primed BV2 murine microglial cells. Microglia cells were pre-treated with SH66 followed by LPS (100 ng/mL) activation. SH66 treatment attenuated the production of inflammatory mediators, including nitric oxide and proinflammatory cytokines, by down-regulating mitogen-activated protein kinase signaling in LPS-activated microglia. The SH66-mediated inhibition of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and the respective inflammatory biomarker-like active interleukin (IL)-1ß were noted to be one of the key pathways of the anti-inflammatory effect. In addition, SH66 increased the neurite length in the N2a neuronal cell and the level of nerve growth factor in the C6 astrocyte cell. Our results demonstrated the anti-neuroinflammatory effect of SH66 against LPS-activated microglia-mediated inflammatory events by down-regulating the NLRP3 inflammasome complex, with respect to its neuroprotective effect. SH66 could be an interesting candidate for further research and development regarding prophylactics and therapeutics for inflammation-mediated neurological complications.
Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Microglía , Microglía/efectos de los fármacos , Microglía/metabolismo , Lipopolisacáridos/farmacología , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Isoflavonas/farmacología , Isoflavonas/química , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismoRESUMEN
BACKGROUND: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. OBJECTIVE: To study IL-13 induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. METHODS: Quantitative CT (qCT) lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 severe, 11 non-severe asthma and 18 healthy participants) in the Severe Asthma Research Program (SARPIII) and measured for mucin and cilia related proteins. Epithelial cells were differentiated in air-liquid interphase (ALI) with IL-13 +/-dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF) and epithelial integrity (transepithelial electrical resistance, TEER). RESULTS: Increased Muc5AC (Δ+263.2±92.7 lums/EpiArea) and decreased ciliated cells (Δ-0.07±0.03 Foxj1+cells/EpiArea) were observed in biopsies from severe asthma when compared to healthy (p<0.01 and p=0.047 respectively). RNAseq of epithelial cell brushes confirmed a Muc5AC increase with a decrease in a 5-gene cilia-related mean in severe asthma compared to healthy (all p<0.05). IL-13 (5 ng/mL) differentiated ALI cultures of healthy and asthmatic (severe and non-severe participants) increased Muc5AC, decreased cilia (α-acytl-tubulin) in healthy (Δ+6.5±1.5%, Δ-14.1±2.7%; all p<0.001 respectively) and asthma (Δ+4.4±2.5%, Δ-13.1±2.7%; p=0.084, p<0.001 respectively); decreased epithelial integrity (TEER) in healthy (-140.9±21.3 [ohms], p<0.001) while decreasing CBF in asthma (Δ-4.4±1.7 [Hz], p<0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC but there was restoration of cilia in healthy and asthma participants (absolute increase of 67.5% and 32.5% cilia, all p<0.05 respectively) while CBF increased (Δ+3.6±1.1 [Hz], p<0.001) and TEER decreased (only in asthma Δ-37.8±16.2 [ohms] p<0.05). CONCLUSIONS: IL-13 drives features of airway remodeling in severe asthma which are partially reversed by inhibiting IL-4Rα receptor in vitro.
RESUMEN
While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.
Asunto(s)
Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes , Proteolisis , Proteolisis/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inmunoterapia/métodos , Fotoquimioterapia/métodos , Animales , Ratones , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Humanos , Neoplasias del Colon/terapia , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Nanopartículas/química , Profármacos/química , Profármacos/farmacología , Microambiente Tumoral/efectos de los fármacosRESUMEN
Photothermal therapy (PTT) at mild temperatures ranging from 44 to 45 °C holds tremendous promise as a strategy for inducing potent immunogenic cell death (ICD) within tumor tissues, which can reverse the immunosuppressive tumor microenvironment (ITM) into an immune-responsive milieu. However, accurately and precisely controlling the tumor temperature remains a formidable challenge. Here, we report the precision photothermal immunotherapy by using silica-coated gold nanorods (AuNR@SiO2), and investigating the optimal administration routes and treatment protocols, which enabled to achieve the sustained and controlled mild heating within the tumor tissues. First, the highest photothermal performance of AuNR@SiO2 with 20-nm silica shell thickness than 5 or 40 nm was confirmed in vitro and in vivo. Then, the optimal conditions for precision immunotherapy were further investigated to produce mild temperature (44 to 45 °C) accurately in tumor tissues. The optimal conditions with AuNR@SiO2 result in a distinct cell death with high early/late apoptosis and low necrosis, leading to very efficient ICD compared to lower or higher temperatures. In colon tumor-bearing mice, intratumorally injected AuNR@SiO2 efficiently promotes a mild temperature within the tumor tissues by local irradiation of near-infrared (NIR) laser. This mild PTT substantially increases the population of mature dendritic cells (DCs) and cytotoxic T cells (CTLs) within tumor tissues, ultimately reversing the ITM into an immune-responsive milieu. Furthermore, we found that the combination mild PTT with AuNR@SiO2 and anti-PD-L1 therapy could lead to the 100% complete regression of primary tumors and immunological memory to prevent tumor recurrence. Collectively, this study demonstrates that AuNR@SiO2 with a robust methodology capable of continuously inducing mild temperature accurately within the ITM holds promise as an approach to achieve the precision photothermal immunotherapy.
RESUMEN
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.
Asunto(s)
Antígeno B7-H1 , Nanopartículas , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Nanopartículas/química , Animales , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Femenino , Modelos Animales de Enfermedad , Lípidos/química , Humanos , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Ratones Endogámicos BALB C , Inmunoterapia/métodos , LiposomasRESUMEN
Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using in vivo fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h. Increases to tonic dopamine levels following acute levodopa administration were slow and marginal within the naïve PD model. However, these levels increased faster and higher in the LID model. Furthermore, we identified a strong positive correlation of dyskinetic behavior with the rate of dopamine increase, but much less with its cumulative level, at each time point. Here, we identified the altered signature of striatal DA dynamics underlying LID in PD using an advanced FSCV technique that demonstrates the long-range dynamics of tonic dopamine following drug administration.
RESUMEN
BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.
Asunto(s)
Asma , Humanos , Broncoscopía , Pulmón/diagnóstico por imagen , Moco , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Bronchial thermoplasty (BT) is a treatment for patients with poorly controlled, severe asthma. However, predictors of treatment response to BT are defined poorly. RESEARCH QUESTION: Do baseline radiographic and clinical characteristics exist that predict response to BT? STUDY DESIGN AND METHODS: We conducted a longitudinal prospective cohort study of participants with severe asthma receiving BT across eight academic medical centers. Participants received three separate BT treatments and were monitored at 3-month intervals for 1 year after BT. Similar to prior studies, a positive response to BT was defined as either improvement in Asthma Control Test results of ≥ 3 or Asthma Quality of Life Questionnaire of ≥ 0.5. Regression analyses were used to evaluate the association between pretreatment clinical and quantitative CT scan measures with subsequent BT response. RESULTS: From 2006 through 2017, 88 participants received BT, with 70 participants (79.5%) identified as responders by Asthma Control Test or Asthma Quality of Life Questionnaire criteria. Responders were less likely to undergo an asthma-related ICU admission in the prior year (3% vs 25%; P = .01). On baseline quantitative CT imaging, BT responders showed less air trapping percentage (OR, 0.90; 95% CI, 0.82-0.99; P = .03), a greater Jacobian determinant (OR, 1.49; 95% CI, 1.05-2.11), greater SD of the Jacobian determinant (OR, 1.84; 95% CI, 1.04-3.26), and greater anisotropic deformation index (OR, 3.06; 95% CI, 1.06-8.86). INTERPRETATION: To our knowledge, this is the largest study to evaluate baseline quantitative CT imaging and clinical characteristics associated with BT response. Our results show that preservation of normal lung expansion, indicated by less air trapping, a greater magnitude of isotropic expansion, and greater within-lung spatial variation on quantitative CT imaging, were predictors of future BT response. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01185275; URL: www. CLINICALTRIALS: gov.
Asunto(s)
Asma , Termoplastia Bronquial , Humanos , Asma/tratamiento farmacológico , Termoplastia Bronquial/efectos adversos , Termoplastia Bronquial/métodos , Estudios Longitudinales , Estudios Prospectivos , Calidad de Vida , Tomografía Computarizada por Rayos XRESUMEN
Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.
Asunto(s)
Asma , Eosinofilia , Obesidad , Tomografía Computarizada por Rayos X , Humanos , Asma/diagnóstico por imagen , Asma/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/fisiopatología , Adulto , Eosinofilia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Anciano , Índice de Masa CorporalRESUMEN
Quantitative measurement of the phasic (changes in several seconds) and tonic (changes in minutes to hours) level changes of neurotransmitters is an essential technique for understanding brain functions and brain diseases regulated by the neurotransmitters. However, monitoring phasic and tonic levels of multiple neurotransmitters is still a challenging technology. Microdialysis can measure the tonic levels of multiple neurotransmitters simultaneously but has a low temporal resolution (minute) to analyze precisely. Fast-scan cyclic voltammetry (FSCV) has high temporal resolution and high sensitivity, but it was not able to simultaneously measure the tonic level of multiple neurotransmitters. The recently proposed deep learning-based FSCV method was still only capable of phasic concentration estimation of neurotransmitters. In this study, we estimate the tonic levels of dopamine and serotonin simultaneously by training a deep-learning network with the extracted tonic information from the FSCV. The proposed deep learning model was validated in vitro to simultaneously estimate tonic concentrations of two neurotransmitters with statistically significantly higher accuracy than previously proposed background subtraction-based models (p<0.001). In particular, in the case of serotonin concentration estimation error, the proposed model showed higher prediction performance than the background subtraction-based model (48 nM and 73 nM, respectively). We expect that the proposed technique will help simultaneous measurement of the phasic and tonic levels of numerous neurotransmitters in vivo soon.Clinical Relevance- This study proposes a method to simultaneously measure tonic dopamine and tonic serotonin with high temporal resolution with a single electrode in the brain.
Asunto(s)
Aprendizaje Profundo , Dopamina , Serotonina , Encéfalo , NeurotransmisoresRESUMEN
Quantum identity authentication serves as a crucial technology for secure quantum communication, but its security often faces challenges due to quantum hacking of measurement devices. This study introduces a measurement-device-independent mutual quantum identity authentication (MDI MQIA) scheme capable of ensuring secure user authentication, despite the use of measurement devices vulnerable to quantum hacking. To realize the MDI MQIA scheme, we proposed and applied a modified Bell state measurement based on linear optics, enabling the probabilistic measurement of all Bell states. Furthermore, the proposed experimental setup adopted a plug-and-play architecture, thus efficiently establishing the indistinguishability of two photons prepared by the communication members. Finally, we successfully performed a proof-of-principle experimental demonstration of the proposed scheme using a field-deployed fiber, achieving quantum bit error rates of less than 3%.
RESUMEN
Research on siRNA delivery has seen tremendous growth over the past few decades. As one of the major delivery strategies, siRNA bioconjugates offer the potential to enhance and extend the pharmacological properties of siRNAs while minimizing toxicity. In this paper, we suggest the development of a siRNA conjugate platform with peptides and proteins that are ligands of target receptors for cancer treatment. The siRNA bioconjugates target and block the receptor membrane proteins, enter the cells through receptor-mediated endocytosis, and inhibit the expression of that same target membrane receptor, thereby doubly controlling the function of the membrane proteins. The three kinds of bioconjugates targeting CD47, PD-L1, and EGFR were synthesized via two different copper-free click chemistry reactions. Results showed the cellular uptake of each conjugate, reduction of target gene expression, and efficient functional control of receptor proteins. This platform provides an effective approach for regulating membrane proteins in various diseases beyond cancer.
RESUMEN
Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.