Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 29752, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27452732

RESUMEN

Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Citometría de Imagen/métodos , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral , Línea Celular Tumoral , Humanos
2.
Cancer Inform ; 14(Suppl 4): 19-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26244007

RESUMEN

Therapeutic resistance arises as a result of evolutionary processes driven by dynamic feedback between a heterogeneous cell population and environmental selective pressures. Previous studies have suggested that mutations conferring resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small-cell lung cancer (NSCLC) cells lower the fitness of resistant cells relative to drug-sensitive cells in a drug-free environment. Here, we hypothesize that the local tumor microenvironment could influence the magnitude and directionality of the selective effect, both in the presence and absence of a drug. Using a combined experimental and computational approach, we developed a mathematical model of preexisting drug resistance describing multiple cellular compartments, each representing a specific tumor environmental niche. This model was parameterized using a novel experimental dataset derived from the HCC827 erlotinib-sensitive and -resistant NSCLC cell lines. We found that, in contrast to in the drug-free environment, resistant cells may hold a fitness advantage compared to parental cells in microenvironments deficient in oxygen and nutrients. We then utilized the model to predict the impact of drug and nutrient gradients on tumor composition and recurrence times, demonstrating that these endpoints are strongly dependent on the microenvironment. Our interdisciplinary approach provides a model system to quantitatively investigate the impact of microenvironmental effects on the evolutionary dynamics of tumor cells.

3.
Sci Rep ; 3: 1449, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23618955

RESUMEN

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Modelos Biológicos , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Movimiento Celular , Tamaño de la Célula , Supervivencia Celular , Simulación por Computador , Humanos
4.
Mol Pharm ; 8(6): 2069-79, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-21995722

RESUMEN

Many initially successful anticancer therapies lose effectiveness over time, and eventually, cancer cells acquire resistance to the therapy. Acquired resistance remains a major obstacle to improving remission rates and achieving prolonged disease-free survival. Consequently, novel approaches to overcome or prevent resistance are of significant clinical importance. There has been considerable interest in treating non-small cell lung cancer (NSCLC) with combinations of EGFR-targeted therapeutics (e.g., erlotinib) and cytotoxic therapeutics (e.g., paclitaxel); however, acquired resistance to erlotinib, driven by a variety of mechanisms, remains an obstacle to treatment success. In about 50% of cases, resistance is due to a T790M point mutation in EGFR, and T790M-containing cells ultimately dominate the tumor composition and lead to tumor regrowth. We employed a combined experimental and mathematical modeling-based approach to identify treatment strategies that impede the outgrowth of primary T790M-mediated resistance in NSCLC populations. Our mathematical model predicts the population dynamics of mixtures of sensitive and resistant cells, thereby describing how the tumor composition, initial fraction of resistant cells, and degree of selective pressure influence the time until progression of disease. Model development relied upon quantitative experimental measurements of cell proliferation and death using a novel microscopy approach. Using this approach, we systematically explored the space of combination treatment strategies and demonstrated that optimally timed sequential strategies yielded large improvements in survival outcome relative to monotherapies at the same concentrations. Our investigations revealed regions of the treatment space in which low-dose sequential combination strategies, after preclinical validation, may lead to a tumor reduction and improved survival outcome for patients with T790M-mediated resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Clorhidrato de Erlotinib , Humanos , Modelos Biológicos , Quinazolinas/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...