Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Struct Dyn ; 11(2): 024304, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545397

RESUMEN

This paper presents the implementation of high-energy-resolution off-resonant spectroscopy (HEROS) measurements using self-seeded x-ray free-electron laser (XFEL) pulses. This study systematically investigated XFEL conditions, including photon energy and accumulated shot numbers, to optimize the measurement efficiency for copper foil samples near the K-edge. The x-ray absorption spectra reconstructed using HEROS were compared with those derived from fluorescence-yield measurements. The HEROS-based spectra exhibited consistent line shapes independent of the sample thickness. The potential application of HEROS to high-temperature copper was also explored. HEROS offers distinct advantages including scan-free measurement of x-ray absorption spectra with reduced core-hole lifetime broadening and self-absorption effects. Using self-seeded XFEL pulses, HEROS facilitates single-shot-based pump-probe measurements to investigate the ultrafast dynamics in various materials and diverse conditions.

2.
J Synchrotron Radiat ; 30(Pt 6): 1038-1047, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738032

RESUMEN

Self-seeded hard X-ray pulses at PAL-XFEL were used to commission a resonant X-ray emission spectroscopy experiment with a von Hamos spectrometer. The self-seeded beam, generated through forward Bragg diffraction of the [202] peak in a 100 µm-thick diamond crystal, exhibited an average bandwidth of 0.54 eV at 11.223 keV. A coordinated scanning scheme of electron bunch energy, diamond crystal angle and silicon monochromator allowed us to map the Ir Lß2 X-ray emission lines of IrO2 powder across the Ir L3-absorption edge, from 11.212 to 11.242 keV with an energy step of 0.3 eV. This work provides a reference for hard X-ray emission spectroscopy experiments utilizing self-seeded pulses with a narrow bandwidth, eventually applicable for pump-probe studies in solid-state and diluted systems.

3.
Adv Sci (Weinh) ; 10(21): e2206880, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196414

RESUMEN

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

4.
Nat Commun ; 14(1): 2495, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120432

RESUMEN

X-ray free-electron laser sources enable time-resolved X-ray studies with unmatched temporal resolution. To fully exploit ultrashort X-ray pulses, timing tools are essential. However, new high repetition rate X-ray facilities present challenges for currently used timing tool schemes. Here we address this issue by demonstrating a sensitive timing tool scheme to enhance experimental time resolution in pump-probe experiments at very high pulse repetition rates. Our method employs a self-referenced detection scheme using a time-sheared chirped optical pulse traversing an X-ray stimulated diamond plate. By formulating an effective medium theory, we confirm subtle refractive index changes, induced by sub-milli-Joule intense X-ray pulses, that are measured in our experiment. The system utilizes a Common-Path-Interferometer to detect X-ray-induced phase shifts of the optical probe pulse transmitted through the diamond sample. Owing to the thermal stability of diamond, our approach is well-suited for MHz pulse repetition rates in superconducting linear accelerator-based free-electron lasers.

5.
Chem Sci ; 14(10): 2572-2584, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908966

RESUMEN

Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.

6.
Chemistry ; 27(38): 9905-9918, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884671

RESUMEN

A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3 MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3 MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3 MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2 (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.

7.
Chem Commun (Camb) ; 57(34): 4142-4145, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33908495

RESUMEN

Photo-induced oxidation-enhancement in biomimetic bridged Ru(ii)-Mo(vi) photo-catalyst is unexpectedly photo-activated in ps timescales. One-photon absorption generates an excited state where both photo-oxidized and photo-reduced catalytic centres are activated simultaneously and independently.

8.
J Synchrotron Radiat ; 26(Pt 5): 1432-1447, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490131

RESUMEN

The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse-1 and up to 27000 pulses s-1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV-visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5-20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.


Asunto(s)
Rayos Láser , Fotoquímica/instrumentación , Espectrometría por Rayos X/instrumentación , Calibración , Diseño de Equipo , Fotones , Dispersión de Radiación , Rayos X
9.
Nat Nanotechnol ; 11(6): 566-572, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26999482

RESUMEN

Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Sistemas de Liberación de Medicamentos/instrumentación , Grafito/uso terapéutico , Monitoreo Fisiológico/instrumentación , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Femenino , Oro/química , Oro/uso terapéutico , Grafito/química , Humanos , Metformina/administración & dosificación , Metformina/uso terapéutico , Ratones , Agujas , Sudor/química , Nanomedicina Teranóstica/instrumentación
10.
Nat Commun ; 6: 10059, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616435

RESUMEN

The gastrointestinal tract is a challenging anatomical target for diagnostic and therapeutic procedures for bleeding, polyps and cancerous growths. Advanced endoscopes that combine imaging and therapies within the gastrointestinal tract provide an advantage over stand-alone diagnostic or therapeutic devices. However, current multimodal endoscopes lack the spatial resolution necessary to detect and treat small cancers and other abnormalities. Here we present a multifunctional endoscope-based interventional system that integrates transparent bioelectronics with theranostic nanoparticles, which are photoactivated within highly localized space near tumours or benign growths. These advanced electronics and nanoparticles collectively enable optical fluorescence-based mapping, electrical impedance and pH sensing, contact/temperature monitoring, radio frequency ablation and localized photo/chemotherapy, as the basis of a closed-loop solution for colon cancer treatment. In vitro, ex vivo and in vivo experiments highlight the utility of this technology for accurate detection, delineation and rapid targeted therapy of colon cancer or precancerous lesions.


Asunto(s)
Neoplasias del Colon/diagnóstico , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Nanomedicina Teranóstica/instrumentación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Endoscopios , Endoscopía/instrumentación , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanomedicina Teranóstica/métodos
11.
Yonsei Med J ; 49(1): 84-9, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18306474

RESUMEN

PURPOSE: To reduce beam hardening artifacts caused by the shoulder joint, we explored new and unique methods to improve the quality of images, such as varying the injection site and changing the position of patients (swimmers position). MATERIALS AND METHODS: Fifth-four patients underwent neck CT examinations performed in routine and swimmers position and with a 64-slice MDCT scanner in spiral scanning. To examine the difference due to the injection sites of contrast material, subjects were divided into right- and left-side groups. For the evaluation of images, we carried out a subjective and objective assessment based on radiologists' ratings and noise measurement. RESULTS: Images of the lower neck in the swimmers position exhibited less hardening and streak artifacts. The subjective and objective evaluations showed that the swimmers position received higher rating by radiologists and had lower noise level than that of routine position. The swimmers position was the most effective for the diagnosis of the cervico-thoracic junction area. As for the injection site, we obtained better images by an injection of contrast material in the right arm than in the left. CONCLUSION: CT examination of the lower neck in the swimmers position may improve the quality of image and the effectiveness of diagnosis. The injection of a contrast material to the right side rather than the left side reduced foreign body artifacts.


Asunto(s)
Cuello/diagnóstico por imagen , Radiografía Torácica/métodos , Tórax , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad
12.
J Psychosom Res ; 62(2): 189-95, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17270577

RESUMEN

OBJECTIVE: The objective of this study was to examine the effectiveness of a meditation-based stress management program in patients with anxiety disorder. METHODS: Patients with anxiety disorder were randomly assigned to an 8-week clinical trial of either a meditation-based stress management program or an anxiety disorder education program. The Hamilton Anxiety Rating Scale (HAM-A), the Hamilton Depression Rating Scale (HAM-D), the State-Trait Anxiety Inventory (STAI), the Beck Depression Inventory, and the Symptom Checklist--90-Revised (SCL-90-R) were used to measure outcome at 0, 2, 4, and 8 weeks of the program. RESULTS: Compared to the education group, the meditation-based stress management group showed significant improvement in scores on all anxiety scales (HAM-A, P=.00; STAI state, P=.00; STAI trait, P=.00; anxiety subscale of SCL-90-R, P=.00) and in the SCL-90-R hostility subscale (P=.01). Findings on depression measures were inconsistent, with no significant improvement shown by subjects in the meditation-based stress management group compared to those in the education group. The meditation-based stress management group did not show significant improvement in somatization, obsessive-compulsive symptoms, and interpersonal sensitivity scores, or in the SCL-90-R phobic anxiety subscale compared to the education group. CONCLUSIONS: A meditation-based stress management program can be effective in relieving anxiety symptoms in patients with anxiety disorder. However, well-designed, randomized, and controlled trials are needed to scientifically prove the worth of this intervention prior to treatment.


Asunto(s)
Ansiolíticos/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico , Meditación , Desarrollo de Programa , Autocuidado , Estrés Psicológico/prevención & control , Alprazolam/uso terapéutico , Trastornos de Ansiedad/diagnóstico , Terapia Combinada , Fluvoxamina/uso terapéutico , Humanos , Paroxetina/uso terapéutico , Sertralina/uso terapéutico , Estrés Psicológico/diagnóstico , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA