Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1955, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782410

RESUMEN

p62/SQSTM1 is known to act as a key mediator in the selective autophagy of protein aggregates, or aggrephagy, by steering ubiquitinated protein aggregates towards the autophagy pathway. Here, we use a yeast two-hybrid screen to identify the prefoldin-like chaperone UXT as an interacting protein of p62. We show that UXT can bind to protein aggregates as well as the LB domain of p62, and, possibly by forming an oligomer, increase p62 clustering for its efficient targeting to protein aggregates, thereby promoting the formation of the p62 body and clearance of its cargo via autophagy. We also find that ectopic expression of human UXT delays SOD1(A4V)-induced degeneration of motor neurons in a Xenopus model system, and that specific disruption of the interaction between UXT and p62 suppresses UXT-mediated protection. Together, these results indicate that UXT functions as an autophagy adaptor of p62-dependent aggrephagy. Furthermore, our study illustrates a cooperative relationship between molecular chaperones and the aggrephagy machinery that efficiently removes misfolded protein aggregates.


Asunto(s)
Autofagia/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Agregado de Proteínas , Proteína Sequestosoma-1/genética , Superóxido Dismutasa-1/genética , Animales , Autofagia/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Leupeptinas/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/metabolismo , Transgenes , Xenopus laevis , Proteína Fluorescente Roja
2.
Autophagy ; 17(12): 4231-4248, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783327

RESUMEN

Selective recognition and elimination of misfolded polypeptides are crucial for protein homeostasis. When the ubiquitin-proteasome system is impaired, misfolded polypeptides tend to form small cytosolic aggregates and are transported to the aggresome and eventually eliminated by the autophagy pathway. Despite the importance of this process, the regulation of aggresome formation remains poorly understood. Here, we identify TRIM28/TIF1ß/KAP1 (tripartite motif containing 28) as a negative regulator of aggresome formation. Direct interaction between TRIM28 and CTIF (cap binding complex dependent translation initiation factor) leads to inefficient aggresomal targeting of misfolded polypeptides. We also find that either treatment of cells with poly I:C or infection of the cells by influenza A viruses triggers the phosphorylation of TRIM28 at S473 in a way that depends on double-stranded RNA-activated protein kinase. The phosphorylation promotes association of TRIM28 with CTIF, inhibits aggresome formation, and consequently suppresses viral proliferation. Collectively, our data provide compelling evidence that TRIM28 is a negative regulator of aggresome formation.Abbreviations: BAG3: BCL2-associated athanogene 3; CTIF: CBC-dependent translation initiation factor; CED: CTIF-EEF1A1-DCTN1; DCTN1: dynactin subunit 1; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; EIF2AK2: eukaryotic translation initiation factor 2 alpha kinase 2; HDAC6: histone deacetylase 6; IAV: influenza A virus; IP: immunoprecipitation; PLA: proximity ligation assay; polypeptidyl-puro: polypeptidyl-puromycin; qRT-PCR: quantitative reverse-transcription PCR; siRNA: small interfering RNA.


Asunto(s)
Autofagia , Virus de la Influenza A , Cuerpos de Inclusión/metabolismo , Virus de la Influenza A/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
3.
ACS Synth Biol ; 9(7): 1591-1598, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32584551

RESUMEN

The overproduction and purification of human proteins is a requisite of both basic and medical research. Although many recombinant human proteins have been purified, current protein production methods have several limitations; recombinant proteins are frequently truncated, fail to fold properly, and/or lack appropriate post-translational modifications. In addition, such methods require subcloning of the target gene into relevant plasmids, which can be difficult for long proteins with repeated domains. Here we devised a novel method for target protein production by introduction of a strong promoter for overexpression and an epitope tag for purification in front of the endogenous human gene, in a sense performing molecular cloning directly in the human genome, which does not require cloning of the target gene. As a proof of concept, we successfully purified intact human Reelin protein, which is lengthy (3460 amino acids) and contains repeating domains, and confirmed that it was biologically functional.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Edición Génica/métodos , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Sistemas CRISPR-Cas/genética , Moléculas de Adhesión Celular Neuronal/análisis , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/genética , Humanos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Plásmidos/genética , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteína Reelina , Serina Endopeptidasas/análisis , Serina Endopeptidasas/genética , Espectrometría de Masas en Tándem
4.
Mol Cell ; 73(3): 505-518.e5, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554947

RESUMEN

Microprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing ∼40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.


Asunto(s)
MicroARNs/metabolismo , Motivos de Nucleótidos , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Células HCT116 , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/química , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Nucleic Acids Res ; 46(11): 5726-5736, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29750274

RESUMEN

Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction.


Asunto(s)
Hemina/fisiología , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular , Técnicas de Inactivación de Genes , Humanos , MicroARNs/química , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa III/metabolismo
6.
Cell ; 164(1-2): 81-90, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26748718

RESUMEN

MicroRNA maturation is initiated by RNase III DROSHA that cleaves the stem loop of primary microRNA. DROSHA functions together with its cofactor DGCR8 in a heterotrimeric complex known as Microprocessor. Here, we report the X-ray structure of DROSHA in complex with the C-terminal helix of DGCR8. We find that DROSHA contains two DGCR8-binding sites, one on each RNase III domain (RIIID), which mediate the assembly of Microprocessor. The overall structure of DROSHA is surprisingly similar to that of Dicer despite no sequence homology apart from the C-terminal part, suggesting that DROSHA may have evolved from a Dicer homolog. DROSHA exhibits unique features, including non-canonical zinc-finger motifs, a long insertion in the first RIIID, and the kinked link between Connector helix and RIIID, which explains the 11-bp-measuring "ruler" activity of DROSHA. Our study implicates the evolutionary origin of DROSHA and elucidates the molecular basis of Microprocessor assembly and primary microRNA processing.


Asunto(s)
MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular , Humanos , MicroARNs/química , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
7.
Cell ; 161(6): 1374-87, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26027739

RESUMEN

MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a "ruler" by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing.


Asunto(s)
MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/química , Ribonucleasa III/química , Secuencia de Bases , Dimerización , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , Motivos de Nucleótidos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
8.
Biotechnol Lett ; 30(11): 1893-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18604478

RESUMEN

Mice were fed either 13 nm silver nanoparticles or 2-3.5 mum silver microparticles. The livers were then obtained after 3 days and subjected to a histopathological analysis. The nanoparticle-fed and microparticle-fed livers both exhibited lymphocyte infiltration in the histopathological analysis, suggesting the induction of inflammation. In vitro, a human hepatoma cell line (Huh-7) was treated with the same silver nanoparticles and microparticles. The mitochondrial activity and glutathione production were hardly affected. However, the DNA contents decreased 15% in the nanoparticle-treated cells and 10% in the microparticle-treated cell, suggesting a more potent induction of apoptosis by the nanoparticles. From a microarray analysis of the RNA from the livers of the nano- and micro-particle-fed mice, the expression of genes related to apoptosis and inflammation was found to be altered. These gene expression changes in the nanoparticle-treated livers lead to phenotypical changes, reflecting increased apoptosis and inflammation. The changes in the gene expression were confirmed by using a semi-quantitative RT-PCR.


Asunto(s)
Hígado/efectos de los fármacos , Nanopartículas del Metal/química , Plata/farmacología , Animales , Apoptosis/genética , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Inflamación/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...