Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Med ; 21(5): e1004376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723040

RESUMEN

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Asunto(s)
Antimaláricos , Quimioprevención , Resistencia a Medicamentos , Malaria , Humanos , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/prevención & control , Malaria/transmisión , Malaria/epidemiología , Quimioprevención/métodos , Teorema de Bayes , Genotipo , Proyectos de Investigación
2.
Biochem Pharmacol ; 207: 115348, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400250

RESUMEN

We recently found that the G protein coupled receptor GPR101 mediates the phagocyte-directed pro-resolving activities of RvD5n-3 DPA (n-3 docosapentaenoic acid-derived Resolvin D5). Herein, we investigated the endogenous role of this pro-resolving receptor in modulating macrophage biology using a novel mouse line where the expression of Gpr101 was conditionally deleted in macrophages (MacGpr101KO). Peritoneal macrophages obtained from naïve MacGpr101KO mice displayed a marked shift in the expression of phenotypic and activation markers, including the Interleukin (IL)-10 and IL-23 receptors. Loss of Gpr101 on macrophages was also associated with a significant disruption in their cellular metabolism and a decreased ability to migrate towards the chemoattractant Mcp-1. The alterations in macrophage phenotype observed in Gpr101 deficient macrophages were maintained following inflammatory challenge. This was linked with an increased inflammatory response in the Gpr101 deficient animals and a reduced ability of phagocytes, including macrophages, to clear bacteria. Loss of Gpr101 on macrophages disrupted host pro-resolving responses to zymosan challenge with MacGpr101KO mice exhibiting significantly higher neutrophil numbers and a delay in the resolution interval when compared with control mice. These observations were linked with a marked dysregulation in peritoneal lipid mediator concentrations in Gpr101 deficient mice, with a downregulation of pro-resolving mediators including MaR2n-3 DPA, Resolvin (Rv) D3 and RvE3. Together these findings identify Gpr101 as a novel regulator of both macrophage phenotype and function, modulating key biological activities in both limiting the propagation of inflammation and expediting its resolution.


Asunto(s)
Inflamación , Macrófagos , Receptores Acoplados a Proteínas G , Animales , Ratones , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Inmunidad , Macrófagos/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/genética
3.
Front Cell Infect Microbiol ; 12: 953187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034708

RESUMEN

Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Resistencia a Medicamentos , Humanos , Plasmodium vivax
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA