Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34634906

RESUMEN

Since Fe3O4 was reported to mimic horseradish peroxidase (HRP) with comparable activity (2007), countless peroxidase nanozymes have been developed for a wide range of applications from biological detection assays to disease diagnosis and biomedicine development. However, researchers have recently argued that Fe3O4 has no peroxidase activity because surface Fe(III) cannot oxidize tetramethylbenzidine (TMB) in the absence of H2O2 (cf. HRP). This motivated us to investigate the origin of transition metal oxides as peroxidase mimetics. The redox between their surface Mn+ (oxidation) and H2O2 (reduction) was found to be the key step generating OH radicals, which oxidize not only TMB for color change but other H2O2 to produce HO2 radicals for Mn+ regeneration. This mechanism involving free OH and HO2 radicals is distinct from that of HRP with a radical retained on the Fe-porphyrin ring. Most importantly, it also explains the origin of their catalase-like activity (i.e., the decomposition of H2O2 into H2O and O2). Because the production of OH radicals is the rate-limiting step, the poor activity of Fe3O4 can be attributed to the slow redox of Fe(II) with H2O2, which is two orders of magnitude slower than the most active Cu(I) among common transition metal oxides. We further tested glutathione (GSH) detection on the basis of its peroxidase-like activity to highlight the importance of understanding the mechanism when selecting materials with high performance.

2.
J Phys Chem Lett ; 12(33): 8121-8128, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34410136

RESUMEN

Nitrate (NO3-) reduction reaction (NtRR) is considered as a green alternative method for the conventional method of NH3 synthesis (Haber-Bosch process), which is known as a high energy consuming and large CO2 emitting process. Herein, the copper nanodendrites (Cu NDs) grown along with the {200} facet as an efficient NtRR catalyst have been successfully fabricated and investigated. It exhibited high Faradaic efficiency of 97% at low potential (-0.3 V vs RHE). Furthermore, the 15NO3- isotope labeling method was utilized to confirm the formation of NH3. Both experimental and theoretical studies showed that NtRR on the Cu metal nanostructure is a facet dependent process. Dissociation of NO bonding is supposed to be the rate-determining step as NtRR is a spontaneously reductive and protonation process for all the different facets of Cu. Density functional theory (DFT) calculations revealed that Cu{200} and Cu{220} offer lower activation energy for dissociation of NO compared to that of Cu{111}.

3.
J Hazard Mater ; 407: 124617, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359972

RESUMEN

Gold-based plasmonic nanocrystals have been extensively developed for noninvasive photothermal therapy. In this study, gold nanorods (AuNRs) with (200) plane and gold nanobipyramids (AuNBPs) with (111) plane were utilized as photothermal agents for noninvasive photothermal therapy. With longitudinal surface plasma bands at ~808 nm, both of AuNRs and AuNBPs revealed photothermal capability and reversibility of laser response under 808-nm near-infrared (NIR) laser irradiation. Moreover, AuNBPs with (111) plane exhibited higher photothermal performance than that of AuNRs with (200) plane under NIR laser irradiation. Density function theory (DFT) simulations revealed that water adsorption energy followed the order Au(111) < Au(100), indicating that the water was easily desorbed on the Au(111) surface for photothermal heating. For the photothermal therapy against Escherichia coli (E. coli), AuNBPs also exhibited higher efficiency compared to that of AuNRs under NIR laser irradiation. Combination of experimental photothermal therapy and DFT simulations demonstrated that AuNBPs with (111) plane were better photothermal agents than that of AuNRs with (100) plane.


Asunto(s)
Nanopartículas , Nanotubos , Escherichia coli , Oro
4.
ACS Appl Mater Interfaces ; 12(23): 25853-25860, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32406673

RESUMEN

Intensive energy demand urges state-of-the-art rechargeable batteries. Rechargeable aluminum-ion batteries (AIBs) are promising candidates with suitable cathode materials. Owing to high abundance of carbon, hydrogen, and oxygen and rich chemistry of organics (structural diversity and flexibility), small organic molecules are good choices as the electrode materials for AIB. Herein, a series of small-molecule quinone derivatives (SMQD) as cathode materials for AIB were investigated. Nonetheless, dissolution of small organic molecules into liquid electrolytes remains a fundamental challenge. To nullify the dissolution problem effectively, 1,4-benzoquinone was integrated with four bulky phthalimide groups to form 2,3,5,6-tetraphthalimido-1,4-benzoquinone (TPB) as the cathode materials and assembled to be the AI/TPB cell. As a result, the Al/TPB cell delivered capacity as high as 175 mA h/g over 250 cycles in the urea electrolyte system. Theoretical studies have also been carried out to reveal and understand the storage mechanism of the TPB electrode.

5.
Small ; 15(49): e1904723, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31657122

RESUMEN

The generation of ammonia, hydrogen production, and nitrogen purification are considered as energy intensive processes accompanied with large amounts of CO2 emission. An electrochemical method assisted by photoenergy is widely utilized for the chemical energy conversion. In this work, earth-abundant iron pyrite (FeS2 ) nanocrystals grown on carbon fiber paper (FeS2 /CFP) are found to be an electrochemical and photoactive catalyst for nitrogen reduction reaction under ambient temperature and pressure. The electrochemical results reveal that FeS2 /CFP achieves a high Faradaic efficiency (FE) of ≈14.14% and NH3 yield rate of ≈0.096 µg min-1 at -0.6 V versus RHE electrode in 0.25 m LiClO4 . During the electrochemical catalytic reaction, the crystal structure of FeS2 /CFP remains in the cubic pyrite phase, as analyzed by in situ X-ray diffraction measurements. With near-infrared laser irradiation (808 nm), the NH3 yield rate of the FeS2 /CFP catalyst can be slightly improved to 0.1 µg min-1 with high FE of 14.57%. Furthermore, density functional theory calculations demonstrate that the N2 molecule has strong chemical adsorption energy on the iron atom of FeS2 . Overall, iron pyrite-based materials have proven to be a potential electrocatalyst with photoactive behavior for ammonia production in practical applications.

6.
Chem Commun (Camb) ; 55(30): 4415-4418, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30916081

RESUMEN

The high activity of nanocrystallites is commonly attributed to the terminal high-energy facets. However, we demonstrate that the high activity of the anatase TiO2(001) facet in photocatalytic H2 evolution is not due to its high intrinsic surface energy, but local electronic effects created by surface features on the facet.

7.
Nat Commun ; 10(1): 914, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796236

RESUMEN

Replacement of Hg with non-toxic Au based catalysts for industrial hydrochlorination of acetylene to vinyl chloride is urgently required. However Au catalysts suffer from progressive deactivation caused by auto-reduction of Au(I) and Au(III) active sites and irreversible aggregation of Au(0) inactive sites. Here we show from synchrotron X-ray absorption, STEM imaging and DFT modelling that the availability of ceria(110) surface renders Au(0)/Au(I) as active pairs. Thus, Au(0) is directly involved in the catalysis. Owing to the strong mediating properties of Ce(IV)/Ce(III) with one electron complementary redox coupling reactions, the ceria promotion to Au catalysts gives enhanced activity and stability. Total pre-reduction of Au species to inactive Au nanoparticles of Au/CeO2&AC when placed in a C2H2/HCl stream can also rapidly rejuvenate. This is dramatically achieved by re-dispersing the Au particles to Au(0) atoms and oxidising to Au(I) entities, whereas Au/AC does not recover from the deactivation.

8.
Chem Sci ; 9(9): 2493-2500, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29732126

RESUMEN

As the chemical state of titanium on the surface of TiO2 can be tuned by varying its host facet and surface adsorbate, improved performance has been achieved in fields such as heterogeneous (photo)catalysis, lithium batteries, dye-sensitized solar cells, etc. However, at present, no acceptable surface technique can provide information about the chemical state and distribution of surface cations among facets, making it difficult to unambiguously correlate facet-dependent properties. Even though X-ray photoelectron spectroscopy (XPS) is regarded as a sensitive surface technique, it collects data from the top few layers of the sample, instead of a specific facet, and hence fails to distinguish small changes in the chemical state of Ti imposed by adsorbates on a facet. Herein, based on experimental (chemical probe-assisted NMR) and theoretical (DFT) studies, the true surface Ti chemical states associated with surface modification using -O-, -F, -OH and -SO4 functional groups on the (001) and (101) facets of anatase TiO2 are clearly distinguished. It is also demonstrated, for the first time, that the local electronic effects on surface Ti imposed by adsorbates vary depending on the facet, due to different intrinsic electronic structures.

9.
Anal Chem ; 90(12): 7283-7291, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29787232

RESUMEN

Stereospecific recognition of chiral molecules is ubiquitous in chemical and biological systems, thus leading to strong demand for the development of enantiomeric drugs, enantioselective sensors, and asymmetric catalysts. In this study, we demonstrate the ratio of d-Cys and l-Cys playing an important role in determining the optical properties and the structures of self-assembled Cys-Au(I) supramolecules prepared through a simple reaction of tetrachloroaurate(III) with chiral cysteine (Cys). The irregularly shaped -[d-Cys-Au(I)] n- or - [l-Cys-Au(I)] n- supramolecules with a size larger than 500 nm possessing strong absorption in the near-UV region and chiroptical characteristics were only obtained from the reaction of Au(III) with d-Cys or l-Cys. On the other hand, spindle-shaped -[d/l-Cys-Au(I)] n- supramolecules were formed when using Au(III) with mixtures of d/l-Cys. Our results have suggested that Au(I)···Au(I) aurophilic interactions, and stacked hydrogen bonding and zwitterionic interactions between d/l-Cys ligands are important in determining their structures. The NaBH4-mediated reduction induces the formation of photoluminescent gold nanoclusters (Au NCs) embedded in the chiral -[d-Cys-Au(I)] n- or -[l-Cys-Au(I)] n- supramolecules with a quantum yield of ca. 10%. The as-formed Au NCs/-[d-Cys-Au(I)] n- and Au NCs/-[l-Cys-Au(I)] n- are an enantiospecific substrate that can trap l-carnitine and d-carnitine, respectively, and function as a nanomatrix for surface-assisted laser desorption/ionization mass spectrometry (LDI-MS). The high absorption efficiency of laser energy, analyte-binding capacity, and homogeneity of the Au NCs/-[Cys-Au(I)] n- allow for quantitation of enantiomeric carnitine down to the micromolar regime with high reproducibility. The superior efficiency of the Au NCs/-[d-Cys-Au(I)] n- substrate has been further validated by quantification of l-carnitine in dietary supplements with accuracy and precision. Our study has opened a new avenue for chiral quantitation of various analytes through LDI-MS using metal nanocomposites consisting of NCs and metal-ligand complexes.


Asunto(s)
Carnitina/análisis , Nanocompuestos/química , Cisteína/química , Oro/química , Rayos Láser , Reproducibilidad de los Resultados , Estereoisomerismo
10.
Nat Commun ; 8(1): 675, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939869

RESUMEN

The use of surface-directing species and surface additives to alter nanoparticle morphology and physicochemical properties of particular exposed facets has recently been attracting significant attention. However, challenges in their chemical analysis, sometimes at trace levels, and understanding their roles to elucidate surface structure-activity relationships in optical (solar cells) or (photo)catalytic performance and their removal are significant issues that remain to be solved. Here, we show a detailed analysis of TiO2 facets promoted with surface species (OH, O, SO4, F) with and without post-treatments by 31P adsorbate nuclear magnetic resonance, supported by a range of other characterization tools. We demonstrate that quantitative evaluations of the electronic and structural effects imposed by these surface additives and their removal mechanisms can be obtained, which may lead to the rational control of active TiO2 (001) and (101) facets for a range of applications.Metal oxide nanocrystals can be grown with different facets exposed to give variations in reactivity, but the chemical state of these surfaces is not clear. Here, the authors make use of a phosphine probe molecule allowing the differences in surface chemistry to be mapped by NMR spectroscopy.

11.
Phys Chem Chem Phys ; 19(19): 12085-12093, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28443925

RESUMEN

In this study, we prepared photoluminescent l-cysteine (Cys)-capped gold nanoclusters (Cys-Au NCs) via NaBH4-mediated reduction of aggregated coordination polymers (supramolecules) of -[Cys-Au(i)]n-. The -[Cys-Au(i)]n- supramolecules with interesting chiral properties were formed through simple reactions of chloroauric acid (HAuCl4) with Cys at certain pH values (pH 3-7). The -[Cys-Au(i)]n- polymers could self-assemble into -[Cys-Au(i)]n- supramolecules with irregular morphologies and diameters larger than 500 nm through stacked hydrogen bonding and zwitterionic interactions between Cys ligands and through Au(i)Au(i) aurophilic interactions in solutions with pH values ≤7. The photoluminescent Au NCs (quantum yield = 11.6%) dominated by a Au13 core were embedded in -[Cys-Au(i)]n- supramolecules after NaBH4-mediated reduction. The optical and structural properties of Cys-Au NCs/-[Cys-Au(i)]n- nanocomposites were investigated, revealing that the interaction between Cys ligands plays a critical role in the self-assembly of -[Cys-Au(i)]n- supramolecules and in the formation of photoluminescent Cys-Au NCs embedded in the supramolecules. To further demonstrate that the photoluminescence properties and structures of the nanocomposites are mediated by the intermolecular forces of thiol ligands, other thiol ligands (l-penicillamine, l-homocysteine, 3-mercaptopropionic acid, and l-glutathione) and a ligand-crosslinking agent [bis(sulfosuccinimidyl) suberate; BS3] were used. We concluded that the electrostatic interactions, hydrogen bonding and steric effects dominate the polymer self-assembly into thiol-ligand-Au(i) supramolecules and thus the formation of Au NCs. Our study provides insights into the bottom-up synthesis of photoluminescent Au NCs from thiol-ligand-Au(i) complexes, polymers, and supramolecules. The hybrid Au NCs/-[Cys-Au(i)]n- nanocomposites can potentially be employed as drug carriers and bioimaging agents.


Asunto(s)
Oro/química , Ligandos , Nanopartículas del Metal/química , Cloruros/química , Compuestos de Oro/química , Concentración de Iones de Hidrógeno , Luz , Luminiscencia , Oxidación-Reducción , Polímeros
12.
Nat Commun ; 8: 14283, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28194027

RESUMEN

Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion-graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g-1 with Coulombic efficiency ∼98%, at a current density of 99 mA g-1 (0.9 C) with clear discharge voltage plateaus (2.25-2.0 V and 1.9-1.5 V). The cell has a capacity of 60 mAh g-1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C-Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.

13.
Chemistry ; 21(44): 15686-91, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26350587

RESUMEN

Herein, potential-tunable Na2 Ni1-x Cux Fe(CN)6 nanoparticles with three-dimensional frameworks and large interstitial spaces were synthesized as alternative cathode materials for aqueous sodium-ion batteries by controlling the molar ratio of Ni(II) to Cu(II) at ambient temperature. The influence of the value of x on the crystalline structure, lattice parameters, electrochemical properties, and charge transfer of the resultant compound was explored by using powder X-ray diffractometry, density functional theory, cyclic voltammetry, galvanostatic charge-discharge techniques, and Bader charge analysis. Of the various formulations investigated, that with x=0.25 delivered the highest reversible capacity, superior rate capability, and outstanding cycling performance. These attributes are ascribed to its unique face-centered cubic structure for facile sodium-ion insertion/extraction and the strong interactions between Cu and N atoms, which promote structural stability.

14.
Phys Chem Chem Phys ; 17(21): 14193-200, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25959436

RESUMEN

This study describes the use of a composite nitrate salt solution as a precursor to synthesize CeO2 and Gd2O3-doped CeO2 (GDC) nanoparticles (NPs) using an atmospheric pressure plasma jet (APPJ). The microstructures of CeO2 and GDC NPs were found to be cubical and spherical shaped nanocrystallites with average particle sizes of 10.5 and 6.7 nm, respectively. Reactive oxygen species, detected by optical emission spectroscopy (OES), are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the material characterization and OES observations, the study effectively demonstrated the feasibility of preparing well-crystallized GDC NPs by the APPJ system as well as the gas-to-particle mechanism. Notably, the Bader charge of CeO2 and Ce0.9Gd0.1O2 characterized by density function theory (DFT) simulation and AC impedance measurements shows that Gd helps in increasing the charge on Ce0.9Gd0.1O2 NPs, thus improving their conductivity and making them candidate materials for electrolytes in solid oxide fuel cells.

15.
Nanoscale ; 7(17): 7849-57, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25853995

RESUMEN

Herein we report simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu2O-TiO2 nanocomposite photocatalysts by an ultrasound assisted wet impregnation method. Unlike the conventional preparation techniques, simultaneous reduction of Cu(2+) (in the precursor) to Cu(+) (Cu2O), and graphene oxide (GO) to rGO is achieved by an ultrasonic method without the addition of any external reducing agent; this is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plots) provide evidence for the loading of Cu2O tailoring the optical band gap of the photocatalyst from 3.21 eV to 2.87 eV. The photoreactivity of the as-prepared Cu2O-TiO2/rGO samples is determined via H2 evolution from water in the presence of glycerol as a hole (h(+)) scavenger under visible light irradiation. Very interestingly, the addition of rGO augments the carrier mobility at the Cu2O-TiO2 p-n heterojunction, which is evidenced by the significantly reduced luminescence intensity of the Cu2O-TiO2/rGO photocatalyst. Hence rGO astonishingly enhances the photocatalytic activity compared with pristine TiO2 nanoparticles (NPs) and Cu2O-TiO2, by factors of ∼14 and ∼7, respectively. A maximum H2 production rate of 110 968 µmol h(-1) gcat(-1) is obtained with a 1.0% Cu and 3.0% GO photocatalyst composition; this is significantly higher than previously reported graphene based photocatalysts. Additionally, the present H2 production rate is much higher than those of precious/noble metal (especially Pt) assisted (as co-catalysts) graphene based photocatalysts. Moreover, to the best of our knowledge, this is the highest H2 production rate (110 968 µmol h(-1) gcat(-1)) achieved by a graphene based photocatalyst through the splitting of water under visible light irradiation.

16.
J Am Chem Soc ; 137(4): 1587-92, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25588180

RESUMEN

Hydrogen evolution reaction (HER) from water through electrocatalysis using cost-effective materials to replace precious Pt catalysts holds great promise for clean energy technologies. In this work we developed a highly active and stable catalyst containing Co doped earth abundant iron pyrite FeS(2) nanosheets hybridized with carbon nanotubes (Fe(1-x)CoxS(2)/CNT hybrid catalysts) for HER in acidic solutions. The pyrite phase of Fe(1-x)CoxS(2)/CNT was characterized by powder X-ray diffraction and absorption spectroscopy. Electrochemical measurements showed a low overpotential of ∼0.12 V at 20 mA/cm(2), small Tafel slope of ∼46 mV/decade, and long-term durability over 40 h of HER operation using bulk quantities of Fe(0.9)Co(0.1)S(2)/CNT hybrid catalysts at high loadings (∼7 mg/cm(2)). Density functional theory calculation revealed that the origin of high catalytic activity stemmed from a large reduction of the kinetic energy barrier of H atom adsorption on FeS(2) surface upon Co doping in the iron pyrite structure. It is also found that the high HER catalytic activity of Fe(0.9)Co(0.1)S(2) hinges on the hybridization with CNTs to impart strong heteroatomic interactions between CNT and Fe(0.9)Co(0.1)S(2). This work produces the most active HER catalyst based on iron pyrite, suggesting a scalable, low cost, and highly efficient catalyst for hydrogen generation.

17.
Ultrasound Med Biol ; 41(2): 565-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25542489

RESUMEN

Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and echogenicity of flowing blood were compared with those obtained in several previous studies.


Asunto(s)
Hemorreología/fisiología , Ultrasonografía Doppler , Animales , Velocidad del Flujo Sanguíneo/fisiología , Fantasmas de Imagen , Porcinos
18.
Biosensors (Basel) ; 4(4): 461-471, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25587434

RESUMEN

Bimetallic nanostructured core-shell structures are commonly used as catalysts in a wide variety of reactions. We surmised that the addition of an additional metal would potentially allow catalytic tailoring with the possibility of an increase in activity. Here a tri-metallic catalytic structure, consisting of clustered catalytic Pt on the surface of a Pd shell supported on a rod shaped Au core was fabricated. The significance of the additional metallic component is shown by comparative electrochemically active surface area (ECSA) analysis results for the trimetallic Aurod-Pdshell-Ptcluster, bimetallic Aurod-Ptcluster and monometallic JM-Pt (used as a reference), which have respective ECSA values (cm(2)/mgPt) of 1883.0, 1371.7 and 879. The potential utility of the trimetallic catalysts was shown in a hydrogen peroxide sensing protocol, which showed the catalyst to have a sensitivity of 604 ìA/mMcm(2) within a linear range of 0.0013-6.191 mM.

20.
Chemistry ; 19(3): 905-15, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23197430

RESUMEN

A controlled composition-based method--that is, the microwave-assisted ethylene glycol (MEG) method--was successfully developed to prepare bimetallic Pt(x)Ru(100-x)/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of Pt(x)Ru(100-x)/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these Pt(x)Ru(100-x)/C NPs has a strong influence on their Pt d-band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X-ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. Among the Pt(x)Ru(100-x)/C NPs with various Pt:Ru atomic ratios (x = 25, 50, and 75), the Pt(75)Ru(25)/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d-band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the Pt(x)Ru(100-x)/C NPs, and possibly other bimetallic Pt-based alloy NPs.


Asunto(s)
Carbono/química , Metanol/química , Nanopartículas/química , Platino (Metal)/química , Rutenio/química , Catálisis , Técnicas Electroquímicas , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...