Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166874, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666439

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the enzyme glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the gluconeogenic organs, namely liver, kidney cortex, and intestine. Renal G6Pase-α deficiency in GSD-Ia is characterized by impaired gluconeogenesis, nephromegaly due to elevated glycogen accumulation, and nephropathy caused, in part, by renal fibrosis, mediated by activation of the renin-angiotensin system (RAS). The Wnt/ß-catenin signaling regulates the expression of a variety of downstream mediators implicated in renal fibrosis, including multiple genes in the RAS. Sustained activation of Wnt/ß-catenin signaling is associated with the development and progression of renal fibrotic lesions that can lead to chronic kidney disease. In this study, we examined the molecular mechanism underlying GSD-Ia nephropathy. Damage to the kidney proximal tubules is known to trigger acute kidney injury (AKI) that can, in turn, activate Wnt/ß-catenin signaling. We show that GSD-Ia mice have AKI that leads to activation of the Wnt/ß-catenin/RAS axis. Renal fibrosis was demonstrated by increased renal levels of Snail1, α-smooth muscle actin (α-SMA), and extracellular matrix proteins, including collagen-Iα1 and collagen-IV. Treating GSD-Ia mice with a CBP/ß-catenin inhibitor, ICG-001, significantly decreased nuclear translocated active ß-catenin and reduced renal levels of renin, Snail1, α-SMA, and collagen-IV. The results suggest that inhibition of Wnt/ß-catenin signaling may be a promising therapeutic strategy for GSD-Ia nephropathy.


Asunto(s)
Lesión Renal Aguda , beta Catenina , Ratones , Animales , beta Catenina/genética , beta Catenina/metabolismo , Fibrosis , Colágeno
2.
J Inherit Metab Dis ; 46(6): 1147-1158, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37467014

RESUMEN

Glycogen storage disease type-Ia (GSD-Ia), characterized by impaired blood glucose homeostasis, is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). Using the G6pc-R83C mouse model of GSD-Ia, we explored a CRISPR/Cas9-based double-strand DNA oligonucleotide (dsODN) insertional strategy that uses the nonhomologous end-joining repair mechanism to correct the pathogenic p.R83C variant in G6pc exon-2. The strategy is based on the insertion of a short dsODN into G6pc exon-2 to disrupt the native exon and to introduce an additional splice acceptor site and the correcting sequence. When transcribed and spliced, the edited gene would generate a wild-type mRNA encoding the native G6Pase-α protein. The editing reagents formulated in lipid nanoparticles (LNPs) were delivered to the liver. Mice were treated either with one dose of LNP-dsODN at age 4 weeks or with two doses of LNP-dsODN at age 2 and 4 weeks. The G6pc-R83C mice receiving successful editing expressed ~4% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, lacked hypoglycemic seizures, and displayed normalized blood metabolite profile. The outcomes are consistent with preclinical studies supporting previous gene augmentation therapy which is currently in clinical trials. This editing strategy may offer the basis for a therapeutic approach with an earlier clinical intervention than gene augmentation, with the additional benefit of a potentially permanent correction of the GSD-Ia phenotype.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Oligonucleótidos , Ratones , Animales , Oligonucleótidos/metabolismo , Sistemas CRISPR-Cas , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo
3.
Hum Mol Genet ; 32(2): 262-275, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35961004

RESUMEN

Type Ib glycogen storage disease (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that translocates G6P from the cytoplasm into the endoplasmic reticulum lumen, where the intraluminal G6P is hydrolyzed to glucose by glucose-6-phosphatase-α (G6Pase-α). Clinically, GSD-Ib patients manifest a metabolic phenotype of impaired blood glucose homeostasis and a long-term risk of hepatocellular adenoma/carcinoma (HCA/HCC). Studies have shown that autophagy deficiency contributes to hepatocarcinogenesis. In this study, we show that G6PT deficiency leads to impaired hepatic autophagy evident from attenuated expression of many components of the autophagy network, decreased autophagosome formation and reduced autophagy flux. The G6PT-deficient liver displayed impaired sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) signaling, along with reduced expression of SIRT1, forkhead boxO3a (FoxO3a), liver kinase B-1 (LKB1) and the active p-AMPK. Importantly, we show that overexpression of either SIRT1 or LKB1 in G6PT-deficient liver restored autophagy and SIRT1/FoxO3a and LKB1/AMPK signaling. The hepatosteatosis in G6PT-deficient liver decreased SIRT1 expression. LKB1 overexpression reduced hepatic triglyceride levels, providing a potential link between LKB1/AMPK signaling upregulation and the increase in SIRT1 expression. In conclusion, downregulation of SIRT1/FoxO3a and LKB1/AMPK signaling underlies impaired hepatic autophagy which may contribute to HCA/HCC development in GSD-Ib. Understanding this mechanism may guide future therapies.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad del Almacenamiento de Glucógeno Tipo I , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiología , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Autofagia/genética
4.
Mol Ther ; 29(4): 1602-1610, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33359667

RESUMEN

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.


Asunto(s)
Edición Génica , Terapia Genética , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Glucosa/genética , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Humanos , Hígado/metabolismo , Hígado/patología , Ratones
5.
Biochem Biophys Res Commun ; 527(3): 824-830, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32430177

RESUMEN

The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence. Short term gene transfer study in G6pc-/- mice showed that the rAAV-G6PC-S298C vector is 3-fold more efficacious than the native rAAV-G6PC vector. We have shown previously that restoring 3% of normal hepatic G6Pase-α activity in G6pc-/- mice prevents hepatocellular adenoma/carcinoma (HCA/HCC) development and that mice harboring <3% of normal hepatic G6Pase-α activity are at risk of tumor development. We have also shown that G6Pase-α deficiency leads to hepatic autophagy impairment that can contribute to hepatocarcinogenesis. We now undertake a long-term (66-week) preclinical characterization of the rAAV-G6PC-S298C vector in GSD-Ia gene therapy. We show that the increased efficacy of rAAV-G6PC-S298C has enabled the G6pc-/- mice treated with a lower dose of this vector to survive long-term. We further show that mice expressing ≥3% of normal hepatic G6Pase-α activity do not develop hepatic tumors or autophagy impairment but mice expressing <3% of normal hepatic G6Pase-α activity display impaired hepatic autophagy with one developing HCA/HCC nodules. Our study shows that the rAAV-G6PC-S298C vector provides equal or greater efficacy to the codon optimization approach, offering a valuable alternative vector for clinical translation in human GSD-Ia.


Asunto(s)
Terapia Genética , Vectores Genéticos/uso terapéutico , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Mutación Puntual , Animales , Autofagia , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Humanos , Hígado/metabolismo , Hígado/patología , Ratones
6.
Hum Mol Genet ; 29(5): 834-844, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31961433

RESUMEN

Glucose-6-phosphatase-α (G6Pase-α or G6PC) deficiency in glycogen storage disease type-Ia (GSD-Ia) leads to impaired hepatic autophagy, a recycling process important for cellular metabolism and homeostasis. Autophagy can be regulated by several energy sensing pathways, including sirtuin 1 (SIRT1), forkhead box O (FoxO), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and mammalian target of rapamycin (mTOR). Using 10-day old global G6pc-deficient (G6pc-/-) mice, hepatic autophagy impairment was attributed to activation of mTOR and inhibition of AMPK signaling. In other studies, using adult liver-specific G6pc-deficient mice at both pre-tumor and tumor stages, hepatic autophagy impairment was attributed to downregulation of SIRT1 signaling and mTOR was not implicated. In this study, we provide a detailed analysis of the major autophagy pathways in young G6pc-/- mice over the first 4 weeks of life. We show that impaired SIRT1, FoxO3a, AMPK, and PPAR-α signaling are responsible for autophagy impairment but mTOR is involved minimally. Hepatic SIRT1 overexpression corrects defective autophagy, restores the expression of FoxO3a and liver kinase B1 but fails to normalize impaired PPAR-α expression or metabolic abnormalities associated with GSD-Ia. Importantly, restoration of hepatic G6Pase-α expression in G6pc-/- mice corrects defective autophagy, restores SIRT1/FoxO3a/AMPK/PPAR-α signaling and rectifies metabolic abnormalities. Taken together, these data show that hepatic autophagy impairment in GSD-Ia is mediated by downregulation of SIRT1/FoxO3a/AMPK/PPAR-α signaling.


Asunto(s)
Autofagia , Proteína Forkhead Box O3/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Hígado/patología , PPAR alfa/metabolismo , Proteínas Quinasas/metabolismo , Sirtuina 1/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Metaboloma , Ratones , Transducción de Señal
7.
Biochem Biophys Res Commun ; 522(1): 1-7, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31735334

RESUMEN

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of the metabolic disorder glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6PC or G6Pase-α). We have shown previously that hepatic G6Pase-α deficiency leads to autophagy impairment, mitochondrial dysfunction, enhanced glycolysis, and augmented hexose monophosphate shunt, all of which can contribute to hepatocarcinogenesis. However, the mechanism underlying HCA/HCC development in GSD-Ia remains unclear. We now show that G6Pase-α deficiency-mediated hepatic autophagy impairment leads to sustained accumulation of an autophagy-specific substrate p62 which can activate tumor-promoting pathways including nuclear factor erythroid 2-related factor 2 (Nrf2) and mammalian target of rapamycin complex 1 (mTORC1). Consistently, the HCA/HCC lesions developed in the G6Pase-α-deficient livers display marked accumulation of p62 aggregates and phosphorylated p62 along with activation of Nrf2 and mTORC1 signaling. Furthermore, the HCA/HCC lesions exhibit activation of additional oncogenic pathways, ß-catenin and Yes-associated protein (YAP) which is implicated in autophagy impairment. Intriguingly, hepatic levels of glucose-6-phosphate and glycogen which are accumulated in the G6Pase-α-deficient livers were significantly lower in HCC than those in HCA. Conversely, compared to HCA, the HCC lesion display increased expression of many oncogenes and the M2 isoform of pyruvate kinase (PKM2), a glycolytic enzyme critical for aerobic glycolysis and tumorigenesis. Collectively, our data show that hepatic G6Pase-α-deficiency leads to persistent autophagy impairment and activation of multiple tumor-promoting pathways that contribute to HCA/HCC development in GSD-Ia.


Asunto(s)
Carcinoma Hepatocelular/etiología , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Neoplasias Hepáticas/etiología , Animales , Autofagia , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
8.
J Inherit Metab Dis ; 42(3): 470-479, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714174

RESUMEN

Glycogen storage disease type-Ia (GSD-Ia), caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), is characterized by impaired glucose homeostasis with a hallmark hypoglycemia, following a short fast. We have shown that G6pc-deficient (G6pc-/-) mice treated with recombinant adeno-associated virus (rAAV) vectors expressing either wild-type (WT) (rAAV-hG6PC-WT) or codon-optimized (co) (rAAV-co-hG6PC) human (h) G6Pase-α maintain glucose homeostasis if they restore ≥3% of normal hepatic G6Pase-α activity. The co vector, which has a higher potency, is currently being used in a phase I/II clinical trial for human GSD-Ia (NCT03517085). While routinely used in clinical therapies, co vectors may not always be optimal. Codon-optimization can impact RNA secondary structure, change RNA/DNA protein-binding sites, affect protein conformation and function, and alter posttranscriptional modifications that may reduce potency or efficacy. We therefore sought to develop alternative approaches to increase the potency of the G6PC gene transfer vectors. Using an evolutionary sequence analysis, we identified a Ser-298 to Cys-298 substitution naturally found in canine, mouse, rat, and several primate G6Pase-α isozymes, that when incorporated into the WT hG6Pase-α sequence, markedly enhanced enzymatic activity. Using G6pc-/- mice, we show that the efficacy of the rAAV-hG6PC-S298C vector was 3-fold higher than that of the rAAV-hG6PC-WT vector. The rAAV-hG6PC-S298C vector with increased efficacy, that minimizes the potential problems associated with codon-optimization, offers a valuable vector for clinical translation in human GSD-Ia.


Asunto(s)
Terapia Genética/métodos , Glucosa-6-Fosfatasa/genética , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Homeostasis , Humanos , Hígado/enzimología , Ratones , Ratones Noqueados , Ratas
9.
J Inherit Metab Dis ; 42(3): 459-469, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30637773

RESUMEN

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of glycogen storage disease type-Ia (GSD-Ia), which is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in gluconeogenesis. Currently, there is no therapy to address HCA/HCC in GSD-Ia. We have previously shown that a recombinant adeno-associated virus (rAAV) vector-mediated G6PC gene transfer to 2-week-old G6pc-/- mice prevents HCA development. However, it remains unclear whether G6PC gene transfer at the tumor developing stage of GSD-Ia can prevent tumor initiation or abrogate the pre-existing tumors. Using liver-specific G6pc-knockout (L-G6pc-/-) mice that develop HCA/HCC, we now show that treating the mice at the tumor-developing stage with rAAV-G6PC restores hepatic G6Pase-α expression, normalizes glucose homeostasis, and prevents de novo HCA/HCC development. The rAAV-G6PC treatment also normalizes defective hepatic autophagy and corrects metabolic abnormalities in the nontumor liver tissues of both tumor-free and tumor-bearing mice. However, gene therapy cannot restore G6Pase-α expression in the HCA/HCC lesions and fails to abrogate any pre-existing tumors. We show that the expression of 11 ß-hydroxysteroid dehydrogenase type-1 that mediates local glucocorticoid activation is downregulated in HCA/HCC lesions, leading to impairment in glucocorticoid signaling critical for gluconeogenesis activation. This suggests that local glucocorticoid action downregulation in the HCA/HCC lesions may suppress gene therapy mediated G6Pase-α restoration. Collectively, our data show that rAAV-mediated gene therapy can prevent de novo HCA/HCC development in L-G6pc-/- mice at the tumor developing stage, but it cannot reduce any pre-existing tumor burden.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Terapia Genética/métodos , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Neoplasias Hepáticas/prevención & control , Animales , Carcinoma Hepatocelular/enzimología , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Homeostasis , Humanos , Hígado/enzimología , Neoplasias Hepáticas/enzimología , Ratones , Ratones Noqueados
11.
J Inherit Metab Dis ; 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740774

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD+-dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.

12.
J Inherit Metab Dis ; 41(6): 1007-1014, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29663270

RESUMEN

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose-6-phosphate (G6P) transporter (G6PT or SLC37A4). The primary function of G6PT is to translocate G6P from the cytoplasm into the lumen of the endoplasmic reticulum (ER). Inside the ER, G6P is hydrolyzed to glucose and phosphate by either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α) or the ubiquitously expressed G6Pase-ß. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6Pase-ß causes GSD-I-related syndrome (GSD-Irs). In gluconeogenic organs, functional coupling of G6PT and G6Pase-α is required to maintain interprandial blood glucose homeostasis. In myeloid tissues, functional coupling of G6PT and G6Pase-ß is required to maintain neutrophil homeostasis. Accordingly, GSD-Ib is a metabolic and immune disorder, manifesting impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. A G6pt knockout mouse model is being exploited to delineate the pathophysiology of GSD-Ib and develop new clinical treatment options, including gene therapy. The safety and efficacy of several G6PT-expressing recombinant adeno-associated virus pseudotype 2/8 vectors have been examined in murine GSD-Ib. The results demonstrate that the liver-directed gene transfer and expression safely corrects metabolic abnormalities and prevents hepatocellular adenoma (HCA) development. However, a second vector system may be required to correct myeloid and renal dysfunction in GSD-Ib. These findings are paving the way to a safe and efficacious gene therapy for entering clinical trials.


Asunto(s)
Glucemia/análisis , Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Animales , Antiportadores/genética , Dependovirus/genética , Vectores Genéticos , Homeostasis , Humanos , Ratones , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/genética , Mutación
13.
Biochem Biophys Res Commun ; 498(4): 925-931, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545180

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Animales , Autofagia , Carcinoma Hepatocelular/etiología , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Glucólisis , Humanos , Hígado/enzimología , Hígado/patología , Neoplasias Hepáticas/etiología , Ratones , Vía de Pentosa Fosfato
14.
Hum Mol Genet ; 26(22): 4395-4405, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973635

RESUMEN

Glycogen storage disease type-Ib (GSD-Ib), deficient in the glucose-6-phosphate transporter (G6PT), is characterized by impaired glucose homeostasis, myeloid dysfunction, and long-term risk of hepatocellular adenoma (HCA). We examined the efficacy of G6PT gene therapy in G6pt-/- mice using recombinant adeno-associated virus (rAAV) vectors, directed by either the G6PC or the G6PT promoter/enhancer. Both vectors corrected hepatic G6PT deficiency in murine GSD-Ib but the G6PC promoter/enhancer was more efficacious. Over a 78-week study, using dose titration of the rAAV vectors, we showed that G6pt-/- mice expressing 3-62% of normal hepatic G6PT activity exhibited a normalized liver phenotype. Two of the 12 mice expressing < 6% of normal hepatic G6PT activity developed HCA. All treated mice were leaner and more sensitive to insulin than wild-type mice. Mice expressing 3-22% of normal hepatic G6PT activity exhibited higher insulin sensitivity than mice expressing 44-62%. The levels of insulin sensitivity correlated with the magnitudes of hepatic carbohydrate response element binding protein signaling activation. In summary, we established the threshold of hepatic G6PT activity required to prevent tumor formation and showed that mice expressing 3-62% of normal hepatic G6PT activity maintained glucose homeostasis and were protected against age-related obesity and insulin resistance.


Asunto(s)
Terapia Genética/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Animales , Antiportadores/genética , Antiportadores/metabolismo , Modelos Animales de Enfermedad , Vectores Genéticos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfato/genética , Glucosa-6-Fosfato/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Homeostasis , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Regiones Promotoras Genéticas
15.
PLoS Genet ; 13(5): e1006819, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28558013

RESUMEN

A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/-) leads to downregulation of sirtuin 1 (SIRT1) signaling that activates autophagy via deacetylation of autophagy-related (ATG) proteins and forkhead box O (FoxO) family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid ß-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV) vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia.


Asunto(s)
Autofagia , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factores de Transcripción Forkhead/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Hepatocitos/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Sirtuina 1/genética
16.
Hum Mol Genet ; 26(10): 1890-1899, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334808

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is characterized by impaired glucose homeostasis and long-term risks of hepatocellular adenoma (HCA) and carcinoma (HCC). We have shown that the non-tumor-bearing (NT), recombinant adeno-associated virus (rAAV) vector-treated GSD-Ia mice (AAV-NT mice) expressing a wide range (0.9-63%) of normal hepatic glucose-6-phosphatase-α activity maintain glucose homeostasis and display physiologic features mimicking animals living under calorie restriction (CR). We now show that in AAV-NT mice, the signaling pathways of the CR mediators, AMP-activated protein kinase (AMPK) and sirtuin-1 are activated. AMPK/sirtuin-1 inhibit the activity of STAT3 (signal transducer and activator of transcription 3) and NFκB (nuclear factor κB), the pro-inflammatory and cancer-promoting transcription factors. Sirtuin-1 also inhibits cancer metastasis via increasing the expression of E-cadherin, a tumor suppressor, and decreasing the expression of mesenchymal markers. Consistently, in AAV-NT mice, hepatic levels of active STAT3 and NFκB-p65 were reduced as were expression of mesenchymal markers, STAT3 targets, NFκB targets and ß-catenin targets, all of which were consistent with the promotion of tumorigenesis. AAV-NT mice also expressed increased levels of E-cadherin and fibroblast growth factor 21 (FGF21), targets of sirtuin-1, and ß-klotho, which can acts as a tumor suppressor. Importantly, treating AAV-NT mice with a sirtuin-1 inhibitor markedly reversed many of the observed anti-inflammatory/anti-tumorigenic signaling pathways. In summary, activation of hepatic AMPK/sirtuin-1 and FGF21/ß-klotho signaling pathways combined with down-regulation of STAT3/NFκB-mediated inflammatory and tumorigenic signaling pathways can explain the absence of hepatic tumors in AAV-NT mice.


Asunto(s)
Glucosa-6-Fosfatasa/metabolismo , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cadherinas/genética , Carcinogénesis/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Expresión Génica , Terapia Genética , Vectores Genéticos , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Inflamación/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , FN-kappa B , Factor de Transcripción STAT3 , Transducción de Señal , Sirtuina 1/metabolismo , beta Catenina/genética
17.
Mol Genet Metab ; 120(3): 229-234, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28096054

RESUMEN

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development.


Asunto(s)
Adenoma de Células Hepáticas/prevención & control , Carcinoma Hepatocelular/prevención & control , Terapia Genética/métodos , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Neoplasias Hepáticas/prevención & control , Adenoma de Células Hepáticas/enzimología , Animales , Carcinoma Hepatocelular/enzimología , Dependovirus/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vectores Genéticos/administración & dosificación , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Homeostasis , Humanos , Hígado/enzimología , Neoplasias Hepáticas/enzimología , Ratones
18.
Liver Res ; 1(3): 174-180, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29576889

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the liver, kidney, and intestine. G6Pase-α catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis, and is a key enzyme for endogenous glucose production. The active site of G6Pase-α is inside the endoplasmic reticulum (ER) lumen. For catalysis, the substrate G6P must be translocated from the cytoplasm into the ER lumen by a G6P transporter (G6PT). The functional coupling of G6Pase-α and G6PT maintains interprandial glucose homeostasis. Dietary therapies for GSD-Ia are available, but cannot prevent the long-term complication of hepatocellular adenoma that may undergo malignant transformation to hepatocellular carcinoma. Animal models of GSD-Ia are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.

19.
Hum Mol Genet ; 24(18): 5115-25, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26089201

RESUMEN

Glycogen storage disease type-Ia (GSD-Ia) is caused by a lack of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. We have shown that gene therapy mediated by a recombinant adeno-associated virus (rAAV) vector expressing human G6Pase-α normalizes blood glucose homeostasis in the global G6pc knockout (G6pc(-/-)) mice for 70-90 weeks. The treated G6pc(-/-) mice expressing 3-63% of normal hepatic G6Pase-α activity (AAV mice) produce endogenous hepatic glucose levels 61-68% of wild-type littermates, have a leaner phenotype and exhibit fasting blood insulin levels more typical of young adult mice. We now show that unlike wild-type mice, the lean AAV mice have increased caloric intake and do not develop age-related obesity or insulin resistance. Pathway analysis shows that signaling by hepatic carbohydrate response element binding protein that improves glucose tolerance and insulin signaling is activated in AAV mice. In addition, several longevity factors in the calorie restriction pathway, including the NADH shuttle systems, NAD(+) concentrations and the AMP-activated protein kinase/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway are upregulated in the livers of AAV mice. The finding that partial restoration of hepatic G6Pase-α activity in GSD-Ia mice not only attenuates the phenotype of hepatic G6Pase-α deficiency but also prevents the development of age-related obesity and insulin resistance seen in wild-type mice may suggest relevance of the G6Pase-α enzyme to obesity and diabetes.


Asunto(s)
Expresión Génica , Glucosa-6-Fosfatasa/genética , Resistencia a la Insulina/genética , Obesidad/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Dependovirus/genética , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , NAD/metabolismo , Proteínas Nucleares/metabolismo , Obesidad/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo
20.
J Inherit Metab Dis ; 38(3): 511-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25288127

RESUMEN

Disorders of the glucose-6-phosphatase (G6Pase)/glucose-6-phosphate transporter (G6PT) complexes consist of three subtypes: glycogen storage disease type Ia (GSD-Ia), deficient in the liver/kidney/intestine-restricted G6Pase-α (or G6PC); GSD-Ib, deficient in a ubiquitously expressed G6PT (or SLC37A4); and G6Pase-ß deficiency or severe congenital neutropenia syndrome type 4 (SCN4), deficient in the ubiquitously expressed G6Pase-ß (or G6PC3). G6Pase-α and G6Pase-ß are glucose-6-phosphate (G6P) hydrolases with active sites lying inside the endoplasmic reticulum (ER) lumen and as such are dependent upon the G6PT to translocate G6P from the cytoplasm into the lumen. The tissue expression profiles of the G6Pase enzymes dictate the disease's phenotype. A functional G6Pase-α/G6PT complex maintains interprandial glucose homeostasis, while a functional G6Pase-ß/G6PT complex maintains neutrophil/macrophage energy homeostasis and functionality. G6Pase-ß deficiency is not a glycogen storage disease but biochemically it is a GSD-I related syndrome (GSD-Irs). GSD-Ia and GSD-Ib patients manifest a common metabolic phenotype of impaired blood glucose homeostasis not shared by GSD-Irs. GSD-Ib and GSD-Irs patients manifest a common myeloid phenotype of neutropenia and neutrophil/macrophage dysfunction not shared by GSD-Ia. While a disruption of the activity of the G6Pase-α/G6PT complex readily explains why GSD-Ia and GSD-Ib patients exhibit impaired glucose homeostasis, the basis for neutropenia and myeloid dysfunction in GSD-Ib and GSD-Irs are only now starting to be understood. Animal models of all three disorders are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.


Asunto(s)
Antiportadores/genética , Terapia Genética/métodos , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Proteínas de Transporte de Monosacáridos/genética , Animales , Perros , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Homeostasis , Humanos , Ratones , Modelos Biológicos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA