Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738810

RESUMEN

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Asunto(s)
Asclepias , Hongos , Herbivoria , Hojas de la Planta , Animales , Hojas de la Planta/microbiología , Asclepias/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/genética , Micobioma , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/fisiología , Basidiomycota/aislamiento & purificación , Microbioma Gastrointestinal , Larva/microbiología , Mariposas Nocturnas/microbiología
2.
Nat Commun ; 15(1): 185, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167702

RESUMEN

Biological nanostructures change their shape and function in response to external stimuli, and significant efforts have been made to design artificial biomimicking devices operating on similar principles. In this work we demonstrate a programmable nanofluidic switch, driven by elastocapillarity, and based on nanochannels built from layered two-dimensional nanomaterials possessing atomically smooth surfaces and exceptional mechanical properties. We explore operational modes of the nanoswitch and develop a theoretical framework to explain the phenomenon. By predicting the switching-reversibility phase diagram-based on material, interfacial and wetting properties, as well as the geometry of the nanofluidic circuit-we rationally design switchable nano-capsules capable of enclosing zeptoliter volumes of liquid, as small as the volumes enclosed in viruses. The nanoswitch will find useful application as an active element in integrated nanofluidic circuitry and could be used to explore nanoconfined chemistry and biochemistry, or be incorporated into shape-programmable materials.

3.
J Alzheimers Dis ; 94(2): 547-557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37302029

RESUMEN

BACKGROUND: Previous studies identified that neutrophil-to-lymphocyte ratio (NLR) may be a predictor of dementia. However, the associations between NLR and dementia at the population level were less explored. OBJECTIVE: This retrospective population-based cohort study was designed to identify the associations between NLR and dementia among patients visiting for family medicine consultation in Hong Kong. METHODS: The patients were recruited from January 1, 2000, to December 31, 2003, and followed up until December 31, 2019. The demographics, prior comorbidities, medications, and laboratory results were collected. The primary outcomes were Alzheimer's disease and related dementia and non-Alzheimer's dementia. Cox regression and restricted cubic spline were applied to identify associations between NLR and dementia. RESULTS: A cohort of 9,760 patients (male: 41.08% ; baseline age median: 70.2; median follow-up duration: 4756.5 days) with complete NLR were included. Multivariable Cox regression identified that patients with NLR >5.44 had higher risks of developing Alzheimer's disease and related dementia (hazard ratio [HR]: 1.50, 95% Confidence interval [CI]: 1.17-1.93) but not non-Alzheimer's dementia (HR: 1.33; 95% CI: 0.60-2.95). The restricted cubic splines demonstrated that higher NLR was associated with Alzheimer's disease and related dementia. The relationship between the NLR variability and dementia was also explored; of all the NLR variability measures, only the coefficient of variation was predictive of non-Alzheimer's dementia (HR: 4.93; 95% CI: 1.03-23.61). CONCLUSION: In this population-based cohort, the baseline NLR predicts the risks of developing dementia. Utilizing the baseline NLR during family medicine consultation may help predict the risks of dementia.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , Estudios Retrospectivos , Estudios de Cohortes , Neutrófilos , Linfocitos
4.
Nat Commun ; 13(1): 5015, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028505

RESUMEN

Microstructured composites with hierarchically arranged fillers fabricated by three-dimensional (3D) printing show enhanced properties along the fillers' alignment direction. However, it is still challenging to achieve good control of the filler arrangement and high filler concentration simultaneously, which limits the printed material's properties. In this study, we develop a magnetically assisted drop-on-demand 3D printing technique (MDOD) to print aligned microplatelet reinforced composites. By performing drop-on-demand printing using aqueous slurry inks while applying an external magnetic field, MDOD can print composites with microplatelet fillers aligned at set angles with high filler concentrations up to 50 vol%. Moreover, MDOD allows multimaterial printing with voxelated control. We showcase the capabilities of MDOD by printing multimaterial piezoresistive sensors with tunable performances based on the local microstructure and composition. MDOD thus creates a large design space to enhance the mechanical and functional properties of 3D printed electronic or sensing devices using a wide range of materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA