Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 205: 90-99, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37253411

RESUMEN

Nitric oxide (·NO) is a prevalent antimicrobial that is known to damage iron-containing enzymes in amino acid (AA) biosynthesis pathways. With Escherichia coli, ·NO is detoxified in aerobic environments by Hmp, which is an enzyme that is synthesized de novo in response to ·NO. With this knowledgebase, it is expected that the availability of AAs in the extracellular environment would enhance ·NO detoxification, because AAs would foster translation of Hmp. However, we observed that ·NO detoxification by E. coli was far slower in populations grown and treated in the presence of AAs (AA+) in comparison to those grown and stressed in the absence of AAs (AA-). Further experiments revealed that AA+ populations had difficulty translating proteins under ·NO stress, and that ·NO activated the stringent response in AA+ populations. Additional work revealed significant ATP depletion in ·NO-stressed AA+ cultures that far exceeded that of ·NO-stressed AA- populations. Transcription, translation, and RelA were not found to be significant contributors to the ATP depletion observed, whereas AA import was implicated as a significant ATP consumption pathway. Alleviating ATP depletion while maintaining access to AAs partially restored ·NO detoxification, which suggested that ATP depletion contributed to the translational difficulties observed in ·NO-stressed AA+ populations. These data reveal an unexpected interaction within the ·NO response network of E. coli that stimulates a stringent response by RelA in conditions where AAs are plentiful.


Asunto(s)
Proteínas de Escherichia coli , Hemoproteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Hemoproteínas/metabolismo , Dihidropteridina Reductasa/metabolismo , Adenosina Trifosfato/metabolismo
2.
Front Bioeng Biotechnol ; 8: 1001, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984281

RESUMEN

Antibiotic resistance poses a serious threat to global health. To reinforce the anti-infective arsenal, many novel therapeutic strategies to fight bacterial infections are being explored. Among them, anti-virulence therapies, which target pathways important for virulence, have attracted much attention. Nitric oxide (NO) defense systems have been identified as critical for the pathogenesis of various bacteria, making them an appealing therapeutic target. In this study, we performed chemical screens to identify inhibitors of NO detoxification in Escherichia coli. We found that 2-mercaptobenzothiazole (2-MBT) can potently inhibit cellular detoxification of NO, achieving a level of inhibition that resembled the effect of genetically removing Hmp, the dominant detoxification enzyme under oxygenated conditions. Further analysis revealed that in the presence of NO, 2-MBT impaired the catalysis of Hmp and synthesis of Hmp and other proteins, whereas in its absence there were minimal perturbations to growth and protein synthesis. In addition, by studying the structure-activity relationship of 2-MBT, we found that both sulfur atoms in 2-MBT were vital for its inhibition of NO detoxification. Interestingly, when 2-mercaptothiazole (2-MT), which lacked the benzene ring, was used, differing biological activities were observed, although they too were NO dependent. Specifically, 2-MT could still prohibit NO detoxification, though it did not interfere with Hmp catalysis; rather, it was a stronger inhibitor of protein synthesis and it reduced the transcript levels of hmp, which was not observed with 2-MBT. Overall, these results provide a strong foundation for further exploration of 2-MBT and 2-MT for therapeutic applications.

3.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31061166

RESUMEN

Hydrogen peroxide (H2O2) and nitric oxide (NO·) are toxic metabolites that immune cells use to attack pathogens. These antimicrobials can be present at the same time in phagosomes, and it remains unclear how bacteria deal with these insults when simultaneously present. Here, using Escherichia coli, we observed that simultaneous exposure to H2O2 and NO· leads to prioritized detoxification, where enzymatic removal of NO· is impeded until H2O2 has been eliminated. This phenomenon is reminiscent of carbon catabolite repression (CCR), where preferred carbon sources are catabolized prior to less desirable substrates; however, H2O2 and NO· are toxic, growth-inhibitory compounds rather than growth-promoting nutrients. To understand how NO· detoxification is delayed by H2O2 whereas H2O2 detoxification proceeds unimpeded, we confirmed that the effect depended on Hmp, which is the main NO· detoxification enzyme, and used an approach that integrated computational modeling and experimentation to delineate and test potential mechanisms. Plausible interactions included H2O2-dependent inhibition of hmp transcription and translation, direct inhibition of Hmp catalysis, and competition for reducing equivalents between Hmp and H2O2-degrading enzymes. Experiments illustrated that Hmp catalysis and NAD(P)H supply were not impaired by H2O2, whereas hmp transcription and translation were diminished. A dependence of this phenomenon on transcriptional regulation parallels CCR, and we found it to involve the transcriptional repressor NsrR. Collectively, these data suggest that bacterial regulation of growth inhibitor detoxification has similarities to the regulation of growth substrate consumption, which could have ramifications for infectious disease, bioremediation, and biocatalysis from inhibitor-containing feedstocks.IMPORTANCE Bacteria can be exposed to H2O2 and NO· concurrently within phagosomes. In such multistress situations, bacteria could have evolved to simultaneously degrade both toxic metabolites or preferentially detoxify one over the other. Here, we found that simultaneous exposure to H2O2 and NO· leads to prioritized detoxification, where detoxification of NO· is hampered until H2O2 has been eliminated. This phenomenon resembles CCR, where bacteria consume one substrate over others in carbon source mixtures. Further experimentation revealed a central role for transcriptional regulation in the prioritization of H2O2 over NO·, which is also important to CCR. This study suggests that regulatory scenarios observed in bacterial consumption of growth-promoting compound mixtures can be conserved in bacterial detoxification of toxic metabolite mixtures.


Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Óxido Nítrico/farmacología , Estrés Oxidativo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inactivación Metabólica , Transcripción Genética
4.
Free Radic Biol Med ; 130: 288-296, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366060

RESUMEN

Human immune cells use a battery of toxic chemicals to eliminate invading bacteria. One of those compounds is nitric oxide (NO) and pathogens have evolved various strategies to defend themselves against this immune effector. Enzymatic detoxification is a common approach used by many bacteria, and Escherichia coli employs several enzymes to deal with NO, such as Hmp a flavohemoprotein. In addition to nitrosative stress, nutrient deprivation has been found to play an important role in phagosomal antimicrobial activity. Interestingly, recent work in Salmonella has suggested that DksA, a transcription regulator associated with the stringent response, is a molecular node for integration of nutritional and nitrosative stress signals. Here, we found that, in E. coli, loss of DksA profoundly impairs aerobic NO detoxification, approaching the detoxification capacity of Δhmp, which exhibits little-to-no NO detoxification within aerobic conditions. Investigation of this phenotype revealed that under NO stress ΔdksA suffered from low hmp transcript levels, considerably impaired protein output from the hmp promoter, and reduced catalysis by Hmp when present. These data demonstrate that DksA is critical for NO detoxification by E. coli and that loss of this regulator leads to NO defense deficiencies that span multiple levels.


Asunto(s)
Proteínas de Escherichia coli/genética , Sistema Inmunológico/metabolismo , Óxido Nítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Sistema Inmunológico/microbiología , Inactivación Metabólica/genética , Óxido Nítrico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...