Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38305314

RESUMEN

BACKGROUND: This paper aims to provide a comprehensive review of the nutritional composition and bioactive compounds found in wheatgrass, including chlorophyll, vitamins, minerals, flavonoids, and phenolic compounds, as well as their associated health benefits. The review focuses on various cultivation practices, preservation techniques, and the current utilization of wheatgrass as a whole. Additionally, the potential toxicity of wheatgrass has been discussed. Wheatgrass, a nutrient-rich grass, possesses significant pharmacological and therapeutic qualities. In the present scenario, wheatgrass is available in the form of juice, powder, and tablets, and is incorporated into various food products through different processing treatments. METHOD: Information and data regarding wheatgrass cultivation practices, processing, and preservation methods were collected from scientific sources, including Google Scholar, ResearchGate, ScienceDirect, fig, Web of Science, and Scopus databases. RESULT: Wheatgrass is a highly valuable source of diverse nutrient compounds. Various cultivation methods, such as indoor and outdoor techniques using different growing mediums, have been employed for wheatgrass production. Recent methods for wheatgrass preservation have been suggested to enhance the bioactive compounds present in wheatgrass. CONCLUSION: Numerous studies have demonstrated that the consumption of wheatgrass and wheatgrass- based products can help control diabetes, atherosclerosis, kidney and colon diseases, anemia, and certain types of cancer. The smaller size of wheatgrass allows for easier assimilation of its beneficial compounds. Creating awareness among consumers about the nutritional profile and therapeutic properties of wheatgrass is crucial in order to maximize its market potential.

2.
Front Chem ; 11: 1290619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156021

RESUMEN

Grape leaves, scientifically known as Vitis vinifera, the primary by-product obtained after the processing of grapes, are gathered in enormous amounts and disposed of as agricultural waste. For more sustainable agriculture and better food systems, it is crucial to investigate these byproducts' nutritional values. The primary bioactive compounds present in grape leaves are quercetin, resveratrol, caffeic acid, kaempferol, and gallic acid, which favour pharmacological effects on human health such as antioxidant, anti-inflammatory, anti-obesity, anti-diabetic, and hepatoprotective. Furthermore, grape leaves extract has been used as a functional ingredient for creating both food and non-food products. The aim of the current review is to review the nutritional and phytochemical composition of various varieties of grape leaves, their health-promoting characteristics and their applications. The study also highlights the various extraction techniques including conventional and non-conventional methods for extracting the various bioactive compounds present in grape leaves. Grape leaves bioactives can be extracted using environmentally safe and sustainable processes, which are in line with the rising demand for eco-friendly and healthful products worldwide. These methods are perfectly suited to the changing needs of both customers and industries since they lessen environmental effect, enhance product quality, and offer financial advantages.

3.
Plants (Basel) ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896003

RESUMEN

Lentil is an important grain legume crop which is mostly grown on marginal soils that hamper its productivity. Improvement of salt tolerance in lentils is considered to be a useful strategy of utilizing salt-affected lands in an economic manner. This study was conducted to evaluate the effectiveness of seed priming using silicic acid and humic acid both seperately and in combination to improve salt stress tolerance among three different lentil varieties: IPL-316 (tolerant), PSL-9, and PDL-1 (susceptible). The concentrations and durations of treatments were standardized under the normal condition and the salinity stress condition. Salt stress hindered seedling emergence and biomass production and accelerated Na+ toxicity and oxidative damage at the seedling stage in untreated seeds. Nevertheless, chemical priming improved early seedling emergence, increased root length, shoot length, and seed vigor index I and II, and reduced the mean germination time. A significant quantitative change in biochemical parameters under normal and salinity stress conditions was observed in IPL-316,viz. Specifically, for IPL-316, the following parameters were observed (values under the normal condition and values under salt stress conditions, respectively): chlorophyll-a (16 and 13 mg/g Fw), chlorophyll-b (25 and 16 mg/g FW), total chlorophyll content (42 and 30 mg/g FW), relative leaf water content (92% and 82%), total soluble sugars (26 and 33 ug/g FW), free amino acid (10 and 7 mg/g FW), total phenol (26 and 24 mg of GAE/g FW), total protein (35 and 29 mg/g FW), carbohydrate (208 and 173 mg/g FW), superoxide dismutase (SOD) (29 and 35 unit/min./g FW), proline (0.28 and 0.32 u mol/g FW), catalase (CAT) (84 and 196 unit/mL/g FW), and peroxidase (POX) (217 and 738 unit/mL/g FW). Furthermore, histochemical analysis of H2O2 and O2-, micronutrients, and macronutrients also increased, while malondialdehyde (MDA) (0.31 and 0.47 nmol/mL FW) content decreased using silicic and humic acid priming under salt stress conditions. The combination of silicic and humic acids improved seedling growth and reduced oxidative damage in lentil plants under salt stress conditions. The combination of silicic and humic acid priming hastened seedling emergence, seed quality parameters, and biochemical parameters under salt stress over respective control. To the best of our knowledge, this is the first report of integrated chemical priming in lentils for salinity stress. In conclusion, chemical priming using a combination of silicic and humic acid performed better in terms of seed quality due to enhanced antioxidant machinery, better membrane stability and osmolyte protection, and enhanced nutrient uptake under salt stress conditions.

4.
ACS Omega ; 8(39): 35452-35469, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810640

RESUMEN

Pomegranate peel, derived from the processing of Punica granatum L. (pomegranate), has traditionally been considered agricultural waste. However, recent studies have revealed its potential as a rich source of bioactive compounds with diverse pharmacological effects. Pomegranate peel is a rich reservoir of antioxidants, polyphenols, dietary fiber, and vitamins, which contribute to its remarkable bioactivity. Studies have demonstrated the anti-inflammatory, cardioprotective, wound healing, anticancer, and antimicrobial properties of pomegranate peel owing to the presence of phytochemicals, such as gallic acid, ellagic acid, and punicalagin. The extraction of bioactive compounds from pomegranate peel requires a careful selection of techniques to maximize the yield and quality. Green extraction methods, including pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE), offer efficient and sustainable alternatives to traditional methods. Furthermore, pomegranate peel has been utilized in the food industry, where it can significantly enhance the nutritional value, organoleptic characteristics, and shelf life of food products. Pomegranate peel has the potential to be used to develop innovative functional foods, nutraceuticals, and other value-added products, providing new opportunities for the pharmaceutical, cosmetic, and food industries.

5.
Front Plant Sci ; 14: 1017652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968405

RESUMEN

Introduction: Foxtail millet (Setaria italica L. beauv) is an important crop in underdeveloped countries; however, yield levels are low. The use of varied germplasm in a breeding approach is critical for increasing productivity. Foxtail millet can be cultivated effectively in a wide range of environmental circumstances but it is best suited to hot and dry climates. Methods: In the current study, multivariant traits were used to define 50 genotypes in the first year and 10 genotypes in the second year. The phenotypic correlations among all traits in the entire germplasm were assessed, and the data acquired for all quantitative characters were subjected to analysis of variance for augmented block design. Furthermore, WINDOWS STAT statistical software was used to carry out a principal component analysis (PCA). The presence of substantial variations in most symptoms was shown by analysis of variance. Results: Genotypic coefficient of variation (GCV) projections for grain yields were the highest, followed by panicle lengths and biological yields. Plant height and leaf length had the highest PCV estimates, followed by leaf width. Low GCV and phenotypic coefficient of variation (PCV) were measured as leaf length and 50% flowering in days. According to the PCV study, direct selection based on characters, panicle weight, test weight, and straw weight had a high and positive effect on grain yield per plant in both the rainy and summer seasons, indicating the true relationship between these characters and grain yield per plant, which aids indirect selection for these traits and thus improves grain yield per plant. Variability in foxtail millet germplasm enables plant breeders to effectively select appropriate donor lines for foxtail millet genetic improvement. Discussion: Based on the average performance of genotypes considered superior in terms of grain yield components under Prayagraj agroclimatic conditions, the best five genotypes were: Kangni-7 (GS62), Kangni-1 (G5-14), Kangni-6 (GS-55), Kangni-5 (GS-389), and Kangni-4 (GS-368).

6.
Plants (Basel) ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987087

RESUMEN

In the era of global warming, heat stress, particularly at the seedling stage, is a major problem that affects the production and productivity of crops such as mustard that are grown in cooler climates. Nineteen mustard cultivars were exposed to contrasting temperature regimes-20 °C, 30 °C, 40 °C and a variable range of 25-40 °C-and evaluated for changes in physiological and biochemical parameters at the seedling stage to study their role in heat-stress tolerance. Exposure to heat stress showed detrimental effects on seedling growth as revealed by reduced vigor indices, survival percentages, antioxidant activity and proline content. The cultivars were grouped into tolerant, moderately tolerant and susceptible based on the survival percentage and biochemical parameters. All the conventional and three single-zero cultivars were found to be tolerant and moderately tolerant, respectively, while double-zero cultivars were reckoned to be susceptible except for two cultivars. Significant increases in proline content and catalase and peroxidase activities were found associated with thermo-tolerant cultivars. More efficient antioxidant system activity and proline accumulation were noticed in conventional along with three single-zero (PM-21, PM-22, PM-30) and two double-zero (JC-21, JC-33) cultivars that might have provided better protection to them under heat stress than the remaining one single- and nine double-zero cultivars. Tolerant cultivars also resulted in significantly higher values of most of the yield attributing traits. Heat-stress-tolerant cultivars could easily be selected based on the survival percentage, proline and antioxidants at the seedling stage and included as efficient cultivars in breeding programs.

7.
Plants (Basel) ; 12(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678937

RESUMEN

A two-step freezing cryoprotocol preceded by desiccation to 15 to 25% moisture content was developed and successfully applied to winter dormant buds of mulberry (different Morus spp.) of a core set comprising 238 accessions studies in our laboratory. The survival and recovery percentage of diverse accessions cryobanked for various periods were tested under in vitro conditions, and several factors were analyzed to determine their role in optimizing the recovery of low-viability accessions. The effect of rates of freezing and thawing (both fast and slow), were tested and recovery compared. Recovery conditions such as dark incubation and rehydration in sterile moist moss grass for different durations after cryopreservation led to a higher survival percentage compared to controls. Two different recovery culture media were compared for their efficiency in survival. On average, the survival under in vitro culture conditions using optimized conditions was high: above 60% in majority of the accessions. Dormant buds showed viability in the range of 25 to 100% with an average of 50.4%. The recovery percentage of winter dormant buds after cryopreservation via slow freezing and slow thawing with rehydration by moist moss grass for 2 h was recorded in the range from 63.3 to 90.9% with an average of 81.05%. Without rehydration, it ranged from 50 to 75% with an average of 60.4%. Regeneration of cryopreserved mulberry germplasm after 6 years of storage indicated no survival loss over different years of storage, and 33-40% of the accessions showed viability above 40%, up to a maximum of 100%. Maximum shoot formation (100%) was obtained from Morus alba. The majority of the accessions were rooted in vitro within 20-25 days of subculture in the auxin rich rooting media, except in wild species M. latifolia and M. laevigata, which took longer (45 to 60 days) for root development. All the rooted plantlets were then transferred to the field and successfully established in a glasshouse.

8.
Mol Biol Rep ; 49(12): 11959-11972, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36271308

RESUMEN

BACKGROUND: Fusarium fujikuroi causing bakanae is one of the most significant pathogens of rice and much responsible for yield losses thereby emerging as a major risk to food security. METHODS: In the present study transcriptomic analysis was conducted between two contrasting resistant (C101A51) and susceptible (Rasi) genotypes of rice with the combinations of C101A51 control (CC) vs. C101A51 inoculated (CI); Rasi control (RC) vs. Rasi inoculated (RI) and C101A51 inoculated (CI) vs. Rasi inoculated (RI). RESULTS: In CC vs. CI commonly expressed genes were 12,764. Out of them 567 (4%) were significantly upregulated and 1399 (9%) genes were downregulated. For the RC vs. RI 14, 333 (79%) genes were commonly expressed. For CI vs. RI 13,662 (72%) genes were commonly expressed. Genes related to cysteine proteinase inhibitor 10, disease resistance protein TAO1-like, oleosin 16 kDa-like, pathogenesis-related protein (PR1), (PR4), BTB/POZ and MATH domain-containing protein 5-like, alpha-amylase isozyme were upregulated in resistant genotype C101A51. Whereas, genes related to GDSL esterase/lipase, serine glyoxylate aminotransferase, CASP-like protein 2C1, WAT1-related protein, Cytoplasmic linker associated proteins, xyloglucan endotransglucosylase/hydrolase protein and ß-D xylosidase 7 were upregulated in susceptible genotype Rasi. Gene ontology analysis showed functions related to defence response (GO:0006952), regulation of plant hypersensitive type response (GO:0010363), Potassium ion transmembrane activity (GO:0015079), chloroplast (GO:0009507), response to wounding (GO:0009611), xylan biosynthetic process (GO:0045492) were upregulated in resistant genotype C101A51 under inoculated conditions. CONCLUSION: Real time PCR based validation of the selected DEGs showed that the qRT-PCR was consistent with the RNA-Seq results. This is the first transcriptomic study against bakanae disease of rice in Indian genotypes. Further, functional studies on identified genes and their utilization through different methodology will be helpful for the development of bakanae disease management strategies.


Asunto(s)
Fusarium , Oryza , Oryza/genética , Oryza/metabolismo , Transcriptoma/genética , Enfermedades de las Plantas/genética , Fusarium/genética , Genotipo
9.
Saudi J Biol Sci ; 29(5): 3772-3790, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844408

RESUMEN

Background: Setaria italica (common name- foxtail, kangni) is one of the major food crops which is prominently cultivated in southern regions of India and in certain regions of Uttar Pradesh. Besides the crop's consumption as a general source of carbohydrate rich cereal, the seeds of the crop are comprised of more fiber. So, it is recommended to add in the dietary supplementation of the diabetic people across the country. Objective: In this paper, it intends to investigate the antidiabetic activity and antioxidant activity of S. italica (foxtail millet) seeds in diabetic rats. Methods: The six genotypes of foxtail millets (S. italica) namely Kangni-1, Kangni-4, Kangni-5, Kangni-6, Kangni-7 & Kangni-10 respectively were subjected to in vitro investigations via. comprehensive metabolic panel (CMP) involving blood glucose study, Kidney & Liver function test, and antioxidant study (Catalase test; Glutathione S-transferase (GST); Superoxide Dismutase (SOD); glutathione (GSH); hiobarbituric acid reactive substances (TBARS) & Glutathione peroxidase (GPx) and were performed in vivo animal investigations in Wistar rats. The STZ induced diabetic rats were fed with doses of different S. italica seed aqueous extract to evaluate its anti-hyperglycemic activity by oral administration of SISAE. Further, it was compared with Glibenclamide which acts as one of the standard oral hypoglycemic agents. Results: From achieved outcomes, a significant fall of blood glucose level (70%) produced 300 mg SISAE/kg b.w. after 6 h of extract administration. However, no change could be produced by these doses of the SISAE in normal rats' blood glucose levels. A significant fall in glucose level along with significant glycemic control by lower HbA1c levels was observed in diabetic treated rats after 3 weeks of treatment with 300 mg of SISAE/kg b.w./day when comparing to untreated diabetic rats. Among these five genotypes of S. italica, the differences in the glycemic index were found. a significant fall could be found in blood glucose levels of Wistar rats, when every experimental rat was incorporating with the extract of different genotypes of Setaria italica L. Beauv than the rats treated with Glibenclamide in every 7 days of interval. The level of catalase, SOD, GST, GPx, GSH and TBARS showed variation while the rats were fed with the extract of S. italica in the liver test of rats. In kidney function test, the result shows that there is significant relationship between foxtail extract and kidney function of STZ induced diabetes rats. They show the change in their serum creatinine level, serum urea and serum uric acid. Conclusion: The result obtained from the study shows that the extract of S. italica seeds is capable for the hypolipidemic and antihyperglycemic activities, thereby, they serve as one of the good sources for herbal medicinal items.

10.
Biology (Basel) ; 11(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453727

RESUMEN

American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain high-yielding varieties with improved oil content and quality. The fatty acid composition and particularly the oleic/linoleic acid ratio are major factors influencing oil quality. Our work focused on a fatty acid desaturase (FAD) enzyme involved in the desaturation and conversion of oleic acid to linoleic acid. Following the in silico identification and annotation of Elaeis oleifera FAD2, its molecular and structural features characterization was performed to better understand the mechanistic bases of its enzymatic activity. EoFAD2 is 1173 nucleotides long and encodes a protein of 390 amino acids that shares similarities with other FADs. Interestingly, the phylogenetic study showed three distinguished groups where EoFAD2 clustered among monocotyledonous taxa. EoFAD2 is a membrane-bound protein with five transmembrane domains presumably located in the endoplasmic reticulum. The homodimer organization model of EoFAD2 enzyme and substrates and respective substrate-binding residues were predicted and described. Moreover, the comparison between 24 FAD2 sequences from different species generated two interesting single-nucleotide polymorphisms (SNPs) associated with the oleic/linoleic acid contents.

11.
Plants (Basel) ; 11(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161225

RESUMEN

The present paper aims to investigate the chemical composition of unripe black pine seeds obtained from Bulgaria. The lipid fraction was evaluated in unripe seeds, and the cellulose, total carbohydrates, glucose, fructose, and sucrose were evaluated in seedcakes. The major fatty acid identified in the Pinus nigra seed oil was unsaturated linoleic acid (44.2%), followed by the saturated palmitic acid (31.2%). The amount of unsaturated pinolenic (10.5%) and oleic acids (8.8%) was also rather high. The amino acid composition of the protein fraction of seedcakes was also determined. The amino acid composition was represented mainly by asparagine (3.92 mg/g), serine (3.79 mg/g), alanine (3.65 mg/g), arginine (3.32 mg/g), phenylalanine (2.98 mg/g), lysine (2.85 mg/g), proline (2.69 g/mg), tryptophan (2.44 mg/g), valine (2.33 mg/g), isoleucine (2.28 mg/g), and tyrosine (2.05 mg/g). The mineral content (N, P, K, Mg, Na, and Cu) of the seedcakes was evaluated, as the amount of K (8048.00 mg/kg) and Mg (172.99 mg/kg) were the highest in the samples. These findings emphasized the potential use of the unripe black pine seeds in different areas due to their chemical importance and values.

12.
Mol Biol Rep ; 49(5): 3491-3501, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35076854

RESUMEN

BACKGROUND: In this study, the genetic diversity of local mango (Mangifera indica L.) germplasm including 14 genotypes were evaluated by using morphological, biochemical markers and DNA barcoding technique. Morphological characterization is the first step towards utilizing these germplasm in crop improvement studies. The advanced chloroplast based DNA barcode method can be utilized to assess the genetic diversity and phylogenetic structure in such populations. METHODS: The study was carried out during 2018-2019 years to evaluate local mango germplasm including 14 diverse genotypes based on a number of morphological and biochemical traits and chloroplast DNA barcoding as well. The experiment was laid out in one way ANOVA design with fourteen germplasm indicated with indigenous collection number. RESULTS: Among local mango germplasm, IC 589756 was found to be the most promising with respect to high magnitudes of fruit length, fruit width, fruit weight, pulp weight, soluble solid content (SSC)/Acidity ratio, pH and low acidity followed by IC 589746 exhibiting the highest pulp percentage and SSC accompanied with lowest stone weight and stone percent as compared to the other genotypes. Further, the dendrogram and cluster analyses based on sequencing of chloroplast marker i.e., trnH- psbA and trnCD depicted the relationship among mango genotypes and clearly clustered them into two main clusters at a similarity coefficient 0.035 and 0.150, respectively. The first cluster includes only one genotype and cluster-II contains 13 genotypes. CONCLUSIONS: Particularly results revealed that DNA barcoding of local mango germplasm can assist not only in molecular identification but also help in elucidation of their phylogenetic relationship and thus important in maintaining biodiversity inventories.


Asunto(s)
Mangifera , Cloroplastos/genética , ADN de Cloroplastos , Frutas/genética , Variación Genética , Mangifera/genética , Filogenia
13.
Plants (Basel) ; 10(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34834727

RESUMEN

The fertilizers that are derived from seaweed are known as Seaweed Liquid Fertilizers (SLF). SLF is a modern, cheap, non-toxic, and natural bioactive fertilizer. Among different studied seaweeds, Ascophyllum nodosum is significant as having bioactive ingredients that potentially regulate the molecular, physiological, and biochemical processes of crop plants. In the present study, the effects of the application of different concentrations (0.00%, 0.01%, 0.02%, 0.05%, 0.10%, 0.50%, and 1.00%) of A. nodosum Extract (ANE) to the Vigna aconitifolia through roots (Pot Root Application, PRA) and on the leaves (Pot Foliar Application, PFA) were monitored via the plant growth. The lower concentrations of ANE in both the PRA and PFA experiments showed positive growth on V. aconitifolia. The 0.10% ANE stimulated the maximum shoot growth when applied through the roots, while 0.05% ANE in both PFA and PRA experiments led to an increase in the number of pods, nodules, organic content, and moisture percentage. The 0.10% ANE also increased the leaf numbers, leaf area, and photosynthetic pigments. Hence, the application of 0.05% and 0.10% of A. nodosum extract in two ways (i.e., Pot Foliar Application, PFA, and Pot Root Application, PRA) ameliorated the growth capabilities of V. aconitifolia.

14.
Plants (Basel) ; 10(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34371629

RESUMEN

A mineral fertiliser has positive effects in improving turmeric nutrients, soil enzymes and soil properties. The aim of this research was to study the effect of mineral fertilisers on the content of mineral elements in turmeric rhizome, soil enzymes activity and soil properties in the Tashkent Region, Uzbekistan. For the first time in Uzbekistan, the turmeric rhizome was cultivated to study the mineral elements present in the rhizome. A microplot experiment was conducted with four treatments including T1 (Control), T2 (N75P50K50 kg/ha), T3 (N125P100K100 kg/ha) and T4 (N100P75K75 + B3Zn6Fe6 kg/ha) and turmeric rhizome, which were collected for observation along with the soil samples. The analyses indicated that the NPK + BZnFe (100:75:75:3:6:6 kg/ha) treatment significantly improved minerals such as K, Ca, P, Mg and Na contents rhizome as compared to the control without fertiliser. Likewise, the maximum quantity of micronutrient content viz., Fe, Mn, Zn, Cu, Cr and Si was also recorded in turmeric rhizome treated with NPK + BZnFe (125:100:100:3:6:6 kg/ha). It showed an increase in these micronutrients in the rhizome compared to the control, followed by a low rate of NPK (75:50:50 kg/ha). The highest content in terms of total N, P, K content, humus, active phosphorus, potassium, and enzymes activity was also observed in soil with the treatment of mineral fertiliser viz., NPK + BznFe (100:75:75:3:6:6 kg/ha), which enhanced soil nutrient and enzyme activity. The NPK + BznFe (100:75:75:3:6:6 kg/ha) treatment significantly increased the active N content by 40%, total P content by 38% and total K content by 22% in comparison to the control without mineral fertiliser. Overall, it was found that NPK + BznFe (100:75:75:3:6:6 kg/ha) was significantly valuable for enhancing the total nitrogen, phosphorus, and potassium levels in the soil compared to control, which is useful for improving soil health in terms of soil enzyme and soil nutrients. Additionally, the micronutrients in turmeric rhizome were significantly enhanced when using this combination of fertiliser applications [NPK + BznFe (100:75:75:3:6:6 kg/ha)]. Therefore, this present study revealed that the NPK+BznFe (100:75:75:3:6:6 kg/ha) could produce the most significant yield of high-quality turmeric plants and improve soil properties in Uzbek soil-climate conditions.

15.
Biology (Basel) ; 10(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440021

RESUMEN

Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc., for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element (similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it is not required by plants but its absence results in significant negative consequences or anomalies in plant growth, reproduction and development. Si is reported to reduce the negative impacts of different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily responsible for these positive influences in plants, such as increasing antioxidant activity while reducing soil pollutant absorption. Because of these advantageous properties, the application of Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore, the development and implementation of nano-Si fertilizers with high bioavailability could be crucial for viable agricultural production. Thus, in this context, the objectives of this review are to summarize the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass, could influence rhizospheric microbes and biomass content and are able to improve soil fertility.

16.
Plants (Basel) ; 10(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203887

RESUMEN

Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.

17.
Plants (Basel) ; 9(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348920

RESUMEN

Osmotic stress is a major factor reducing the growth and yield of many horticultural crops worldwide. To reveal reliable markers of tolerant genotypes, we need a comprehensive understanding of the responsive mechanisms in crops. In vitro stress induction can be an efficient tool to study the mechanisms of responses in plants to help gain a better understanding of the physiological and genetic responses of plant tissues against each stress factor. In the present study, the osmotic stress was induced by addition of mannitol into the culture media to reveal biochemical and genetic responses of tea microplants. The contents of proline, threonine, epigallocatechin, and epigallocatechin gallate were increased in leaves during mannitol treatment. The expression level of several genes, namely DHN2, LOX1, LOX6, BAM, SUS1, TPS11, RS1, RS2, and SnRK1.3, was elevated by 2-10 times under mannitol-induced osmotic stress, while the expression of many other stress-related genes was not changed significantly. Surprisingly, down-regulation of the following genes, viz. bHLH12, bHLH7, bHLH21, bHLH43, CBF1, WRKY2, SWEET1, SWEET2, SWEET3, INV5, and LOX7, was observed. During this study, two major groups of highly correlated genes were observed. The first group included seven genes, namely CBF1, DHN3, HXK2,SnRK1.1, SPS, SWEET3, and SWEET1. The second group comprised eight genes, viz. DHN2, SnRK1.3, HXK3, RS1, RS2,LOX6, SUS4, and BAM5. A high level of correlation indicates the high strength connection of the genes which can be co-expressed or can be linked to the joint regulons. The present study demonstrates that tea plants develop several adaptations to cope under osmotic stress in vitro; however, some important stress-related genes were silent or downregulated in microplants.

18.
Plant Dis ; 2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33100153

RESUMEN

High incidence of stem rot in rice (Oryza sativa L.) caused by Sclerotium hydrophilum was observed in Eastern Gangetic plains of India including eastern Uttar Pradesh and Bihar states in rice-wheat irrigated ecosystem in the months of August and September of the years 2016-17 at the maximum tillering stage of the crop plants. A survey was conducted for the prevalence of rice diseases in Eastern Uttar Pradesh and Bihar. Stem rot incidence (12-14%) was observed in widely cultivated rice varieties viz., Swarna, Sabour Surbhit, Samba Mahsuri and Bhagalpur katarani. Brownish to black water-soaked lesions without distinct margins were visually observed on rice leaf sheaths in Pusa, Bihar and Allahabad, Uttar Pradesh (India). To isolate the causal pathogen, pieces of symptomatic leaf sheaths were treated with 1% sodium hypochlorite solution for 1 min, rinsed with sterile distilled water for 2 min, and then transferred to potato dextrose agar (PDA) medium for incubation at 280C. The cultivated mycelium was transferred to fresh PDA medium. Colonies of pure cultures on PDA medium were initially white and turned brown about 2 weeks later. The hyphal width was measured with a range of 4.0 to 6.0 µm. Large numbers of small globose sclerotia were observed on surface of the colonies at 5 days after sub-culturing. The sclerotia were white at first and then turned black over time with maturity. The diameters of sclerotia ranged from 0.32 to 0.51 mm with an average of 0.41 mm (n = 50). DNA of a representative isolate named SH1 was extracted, and the ITS region was amplified by PCR with universal primer pair ITS1/ITS4 (White et al. 1990). Sequence analysis showed 99.66% identity with Sclerotium hydrophilum isolate VC228 (accession no. KT362098) and accession no. obtained (KX181457). Phylogenetic analysis based onneighbour-joining method grouped the isolatesalongwith other isolates from Asia. The pathogen was identified as Sclerotium hydrophilum on the basis of cultural, morphological, pathogenic and molecular characteristics. Further, culture was deposited to Indian Type Culture Collection (ITCC) at the Indian Agricultural Research Institute, New Delhi for the identification where it was identified as Sclerotium hydrophilum with identification number 10039.15. Another culture specimen of the pathogen was also deposited at the ITCC-IARI, New Delhi with accession no. 19160.25. Koch's postulates were completed by inoculating rice plants with PDA disks of5 mm in size bearing both mycelium and sclerotia of S. hydrophilum in 45 days old plants of rice genotype 'Samba Mahsuri' under glass house conditions. After 4th days leaf sheath necrosis was observed around the inoculation plugsunder field conditions.The same fungus was re isolated from the symptomatic lesions of inoculated plants, fulfilling Koch's postulates. Pathogen was reported with high disease incidence in Northern Karnataka (Pramesh et al. 2017). However, based on literature and fungus-host distribution records this is the first report of S. hydrophilum on leaf sheath of rice from North-Eastern plain zone of India.

19.
Biochem Genet ; 58(1): 210-211, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31650275

RESUMEN

The Editor-in-Chief and the publisher have retracted this article [1] because of significant overlap with previously published articles [2-5]. Ajit Uchoi, Surendra Kumar Malik, Ravish Chaudhary, Susheel Kumar, M.R. Rohini, Digvender Pal, and Sezai Ercisli disagree with the retraction. The publisher was not able to get in contact with Rekha Chaudhury, she did not respond to any correspondence about this retraction.

20.
Biochem Genet ; 54(3): 249-269, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26956119

RESUMEN

Phylogenetic relationships of Indian Citron (Citrus medica L.) with other important Citrus species have been inferred through sequence analyses of rbcL and matK gene region of chloroplast DNA. The study was based on 23 accessions of Citrus genotypes representing 15 taxa of Indian Citrus, collected from wild, semi-wild, and domesticated stocks. The phylogeny was inferred using the maximum parsimony (MP) and neighbor-joining (NJ) methods. Both MP and NJ trees separated all the 23 accessions of Citrus into five distinct clusters. The chloroplast DNA (cpDNA) analysis based on rbcL and matK sequence data carried out in Indian taxa of Citrus was useful in differentiating all the true species and species/varieties of probable hybrid origin in distinct clusters or groups. Sequence analysis based on rbcL and matK gene provided unambiguous identification and disposition of true species like C. maxima, C. medica, C. reticulata, and related hybrids/cultivars. The separation of C. maxima, C. medica, and C. reticulata in distinct clusters or sub-clusters supports their distinctiveness as the basic species of edible Citrus. However, the cpDNA sequence analysis of rbcL and matK gene could not find any clear cut differentiation between subgenera Citrus and Papeda as proposed in Swingle's system of classification.


Asunto(s)
Cloroplastos/genética , Citrus/clasificación , Citrus/genética , Análisis de Secuencia de ADN/métodos , ADN de Cloroplastos/genética , Evolución Molecular , Variación Genética , Genotipo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA