Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1377964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633451

RESUMEN

Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.

2.
Plant Physiol Biochem ; 208: 108504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507841

RESUMEN

Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.


Asunto(s)
Óxido Nítrico , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Plantas/metabolismo , Estrés Salino , Salinidad
3.
Plant Physiol Biochem ; 195: 37-46, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36599274

RESUMEN

Heavy metal (HM) toxicity is a well-known hazard which causes deleterious impact on the growth and development of plants. The impact of abscisic acid (ABA) in presence of silicon (Si) on plant development and quality traits has largely gone unexplored. The effects of ABA and Si on the growth, yield, and quality characteristics of Artemisia annua L. plants growing under copper (Cu) stress (20 and 40 mg kg-1) were investigated in a pot experiment. During this investigation, Cu stress caused severe damage to the plants but exogenous administration of Si and ABA ameliorated the harmful effects of Cu toxicity, and the plants displayed higher biomass and improved physio-biochemical attributes. Copper accumulated in the roots and shoots and its toxicity caused oxidative stress as demonstrated by the increased 2-thiobarbituric acid reactive substance (TBARS) content. It also resulted in the increased activity of antioxidant enzymes, however, the exogenous Si and ABA supplementation decreased the buildup of reactive oxygen species (ROS) and lipid peroxidation, alleviating the oxidative damage produced by HM stress. Copper toxicity had a considerable negative impact on glandular trichome density, ultrastructure as well as artemisinin production. However, combined Si and ABA enhanced the size and density of glandular trichomes, resulting in higher artemisinin production. Taken together, our results demonstrated that exogenous ABA and Si supplementation protect A. annua plants against Cu toxicity by improving photosynthetic characteristics, enhancing antioxidant enzyme activity, protecting leaf structure and integrity, avoiding excess Cu deposition in shoot and root tissues, and helping in enhanced artemisinin biosynthesis. Our results indicate that the combined application of Si and ABA improved the overall growth of plants and may thus be used as an effective approach for the improvement of growth and yield of A. annua in Cu-contaminated soils.


Asunto(s)
Artemisia annua , Artemisininas , Ácido Abscísico/farmacología , Cobre/toxicidad , Antioxidantes/farmacología , Silicio/farmacología
4.
J Plant Growth Regul ; : 1-10, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35431419

RESUMEN

Artemisia annua is a medicinal plant particularly known for the production of a sesquiterpene lactone artemisinin; a specialty metabolite known for its efficacy in the treatment of malaria by killing different strains of Plasmodium falciparum due to radicals released upon the cleavage of its endoperoxide motif. Considering these facts and the immense medicinal value of artemisinin, the enhancement of in planta production of artemisinin is highly desirable. As strigolactones are known to regulate various aspects of plant growth and development, the effects of foliar spray of different concentrations of synthetic strigolactone analog GR24 (0, 0.5, 1, 2, 4, and 8 µM) on A. annua were studied. As compared to the control group, the foliar application of GR24 had a positive impact on general growth, photosynthesis, and other physiological indices with 4 µM GR24 showing the best results. The results indicate that GR24 application increased the plant biomass and various attributes related to photosynthesis, like total chlorophyll content, chlorophyll fluorescence, stomatal conductance, internal CO2, and net photosynthetic rate. Moreover, the activity of various enzymes related to photosynthesis like carbonic anhydrase, nitrate reductase, and RuBisCO was escalated. The GR24 also improved certain attributes related to glandular trichomes, with a significant enhancement in content and yield of artemisinin as compared to untreated plants.

5.
Planta ; 254(2): 29, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34263417

RESUMEN

MAIN CONCLUSION: This review analyses the most recent scientific research conducted for the purpose of enhancing artemisinin production. It may help to devise better artemisinin enhancement strategies, so that its production becomes cost effective and becomes available to masses. Malaria is a major threat to world population, particularly in South-East Asia and Africa, due to dearth of effective anti-malarial compounds, emergence of quinine resistant malarial strains, and lack of advanced healthcare facilities. Artemisinin, a sesquiterpene lactone obtained from Artemisia annua L., is the most potent drug against malaria and used in the formulation of artemisinin combination therapies (ACTs). Artemisinin is also effective against various types of cancers, many other microbes including viruses, parasites and bacteria. However, this specialty metabolite and its derivatives generally occur in low amounts in the source plant leading to its production scarcity. Considering the importance of this drug, researchers have been working worldwide to develop novel strategies to augment its production both in vivo and in vitro. Due to complex chemical structure, its chemical synthesis is quite expensive, so researchers need to devise synthetic protocols that are economically viable and also work on increasing the in-planta production of artemisinin by using various strategies like use of phytohormones, stress signals, bioinoculants, breeding and transgenic approaches. The focus of this review is to discuss these artemisinin enhancement strategies, understand mechanisms modulating its biosynthesis, and evaluate if roots play any role in artemisinin production. Furthermore, we also have a critical analysis of various assays used for artemisinin measurement. This may help to develop better artemisinin enhancement strategies which lead to decreased price of ACTs and increased profit to farmers.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Artemisia annua/genética , Fitomejoramiento
6.
Physiol Plant ; 172(2): 1291-1300, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33847385

RESUMEN

Drought can be considered as a cocktail of multiple stressful conditions that contribute to osmotic and ionic imbalance in plants. Considering that water is vital for plant life, the very survival of the plant becomes questionable during drought conditions. Water deficit affects a wide spectrum of morpho-physiological phenomena restricting overall plant growth, development and productivity. To evade such complications and ameliorate drought-induced effects, plants have a battery of various defence mechanisms. These mechanisms can vary from stomatal adjustments to osmotic adjustments and antioxidant metabolism to ion regulations. In this review, we critically evaluate how drought is perceived and signalled through the whole plant via abscisic acid mediated pathways. Additionally, the impact of drought on photosynthesis, gas exchange variables and reactive oxygen species pathway was also reviewed, along with the reversal of these induced effects through associated morpho-physiological counter mechanisms.


Asunto(s)
Ácido Abscísico , Sequías , Fotosíntesis , Plantas , Estrés Fisiológico , Agua
7.
Chemosphere ; 276: 130153, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33714878

RESUMEN

Boron (B) toxicity is a notable abiotic hindrance that restricts crop productivity by disturbing several physiological and biochemical processes in plants. This study was aimed to elucidate the role of salicylic acid (SA) in conferring tolerance to B stress in Mentha arvensis and Cymbopogon flexuosus. Boron toxicity led to a considerable decrease in shoot height and root length, fresh and dry mass of shoot and root, and physiological and biochemical parameters. However, exogenously applied SA relieved the adverse effects caused by B toxicity and led to an increase in growth parameters under B stress and non-stress conditions. The treatment of B resulted in its increased accumulation in roots and shoots of both the plants which, in turn, caused oxidative damage as evident by increased content of malondialdehyde and catalase, peroxidase, superoxide dismutase and glutathione reductase enzyme activities. However, exogenous SA supply significantly affected antioxidant enzyme activities and protected the plants from excess B. Moreover, the essential oil content of two selected plants declined under B toxicity and significantly enhanced in SA-treated stressed plants. The contents of menthol and menthyl acetate in M. arvensis were lowered in B stressed plants which significantly improved in SA treated B-stressed and in their respective SA alone treatment. Similarly, citral-A and citral-B content of C. flexuosus declined under B toxicity, however, SA reversed the negative effects of B toxicity on essential oil components. This assessment stipulated the promising role of exogenously applied SA in alleviating B toxicity in M. arvensis and C. flexuosus by improving antioxidant machinery and limiting B uptake which protects the structural integrity of leaves and also helps in increasing essential oil content.


Asunto(s)
Cymbopogon , Mentha , Aceites Volátiles , Antioxidantes , Boro/toxicidad , Aceites Volátiles/toxicidad , Estrés Oxidativo , Ácido Salicílico/toxicidad , Suelo
8.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052524

RESUMEN

The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.

9.
Plant Physiol Biochem ; 156: 125-134, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32932206

RESUMEN

One of the major abiotic stresses that cause environmental pollution is heavy metal stress. In the present investigation, copper (Cu) toxicity caused morphological and cellular damages to the Artemisia annua L. plants but supplementation of abscisic acid (ABA) ameliorated the damaging effect of Cu. Copper toxicity significantly reduced the shoot and root lengths; fresh and dry weights of shoot. However, exogenous application of ABA to Cu-treated plants significantly attenuated the damaging effects on plants caused by Cu toxicity. Copper stress also reduced the physiological and biochemical parameters, but ABA application ameliorated the negative effects of Cu in the affected plant. Accumulation of Cu in plant tissues significantly increased the membrane damage and oxidative enzyme activities such as catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD). Further, the impact of high concentration of Cu on density, area and ultrastructure of glandular trichomes and artemisinin content was studied. Moreover, the foliar application of ABA improved the area, density of glandular trichomes and secured the plant cells from Cu toxicity. Therefore, this investigation indicated that the exogenous application of ABA protects A. annua plant by increasing antioxidant enzymes activity, which helps in maintaining cell integrity of leaves and results in increased artemisinin production.


Asunto(s)
Ácido Abscísico/farmacología , Artemisia annua/metabolismo , Artemisininas/metabolismo , Cobre/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Tricomas/metabolismo , Artemisia annua/efectos de los fármacos , Homeostasis , Hojas de la Planta
10.
Bull Environ Contam Toxicol ; 104(5): 609-618, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32128603

RESUMEN

The effects of copper (Cu) exposure on growth and physiological characteristics of three genotypes (CN-12, Cim-Sanjeevani and Cim-Arogya) of Artemisia annua L. were elucidated. The plants were grown under naturally illuminated greenhouse conditions and were harvested after physiological maturity (120 days after sowing). Results suggest that 10 mg kg- 1 Cu significantly enhanced the growth and physiological parameters like enzyme activities, photosynthesis. At higher concentrations, Cu inhibited the growth, biomass, photosynthetic parameters; while increased lipid peroxidation in all the genotypes. The activities of antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase were upregulated by the Cu stress. The highest applied concentration of Cu (60 mg kg- 1) proved most toxic for plants. Moreover, artemisinin content was increased upto 10 mg kg- 1 of Cu treatment, compared with control, however, the artemisinin accumulation decreased at higher doses of Cu in all the genotypes. On the basis of studied parameters, Cim-Arogya was found to be most tolerant among all for Cu toxicity.


Asunto(s)
Antioxidantes/metabolismo , Artemisia annua/efectos de los fármacos , Artemisininas/metabolismo , Cobre/toxicidad , Fotosíntesis/efectos de los fármacos , Artemisia annua/genética , Artemisia annua/crecimiento & desarrollo , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Genotipo , Peroxidación de Lípido , Peroxidasa/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...