Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Electron Mater ; 5(10): 5580-5587, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37900260

RESUMEN

The roll-to-roll printing production process for hybrid organic-inorganic perovskite solar cells (PSCs) demands thick and high-performance solution-based diffusion blocking layers. Inverted (p-i-n) PSCs usually incorporate solution-processed PC70BM as the electron-transporting layer (ETL), which offers good electron charge extraction and passivation of the perovskite active layer grain boundaries. Thick fullerene diffusion blocking layers could benefit the long-term lifetime performance of inverted PSCs. However, the low conductivity of PC70BM significantly limits the thickness of the PC70BM buffer layer for optimized PSC performance. In this work, we show that by applying just enough N-DMBI doping principle, we can maintain the power conversion efficiency (PCE) of inverted PSCs with a thick (200 nm) PC70BM diffusion blocking layer. To better understand the origin of an optimal doping level, we combined the experimental results with simulations adapted to the PSCs reported here. Importantly, just enough 0.3% wt N-DMBI-doped 200 nm PC70BM diffusion blocking layer-based inverted PCSs retain a high thermal stability at 60 °C of up to 1000 h without sacrificing their PCE photovoltaic parameters.

2.
ACS Appl Electron Mater ; 5(1): 181-188, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711043

RESUMEN

Indium tin oxide (ITO)-free solution-processed transparent electrodes are an essential component for the low-cost fabrication of organic optoelectronic devices. High-performance silver nanowires (AgNWs) ITO-free inverted organic photovoltaics (OPVs) usually require a AgNWs-embedded process. A simple cost-effective roll-to-roll production process of inverted ITO-free OPVs with AgNWs as a bottom transparent electrode requires solution-based thick metal oxides as carrier-selective contacts. In this reported study, we show that a solution-processed antimony-doped tin oxide (ATO)/polyethylenimine (PEI) electron-selective contact incorporated on the top of non-embedded AgNWs provides a high-performance ITO-free bottom electrode for non-fullerene acceptor (NFA) inverted OPVs.

3.
ACS Appl Electron Mater ; 4(6): 2689-2698, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35782157

RESUMEN

Laser-induced forward transfer (LIFT) printing has emerged as a valid digital printing technique capable of transferring and printing a wide range of electronic materials. In this paper, we present for the first time LIFT printing as a method to fabricate silver (Ag) nanoparticle (np) grids for the development of indium tin oxide (ITO)-free inverted PM6:Y6 nonfullerene acceptor organic photovoltaics (OPVs). Limitations of the direct use of LIFT-printed Ag np grids in inverted ITO-free OPVs are addressed through a Ag grid embedding process. The embedded laser-printed Ag grid lines have high electrical conductivity, while the Ag metal grid transparency is varied by altering the number of Ag grid lines within the inverted OPVs' ITO-free bottom electrode. Following the presented Ag-grid embedding (EMP) process, metal-grid design optimizations, and device engineering methods incorporating an EMB-nine-line Ag np grid/PH500/AI4083/ZnO bottom electrode, we have demonstrated inverted ITO-free OPVs incorporating laser-printed Ag grids with 11.0% power conversion efficiency.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835837

RESUMEN

Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiOx using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiOx, is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiOx thin films show a more gradual mass loss while the bulk Cu:NiOx exhibits a distinct combustion process. The thin films can crystallize to Cu:NiOx at an annealing temperature of 300 °C, irrespective of the Acac/Oxidizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiOx, including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiOx thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiOx HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs0.04(MA0.17FA0.83)0.96 Pb(I0.83Br0.17)3-based PVSCs achieved for Cu:NiOx HTLs for annealing temperature of 300 °C.

5.
Front Chem ; 9: 754487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660541

RESUMEN

This study outlines the synthesis and physicochemical characteristics of a solution-processable iron manganite (FeMnO3) nanoparticles via a chemical combustion method using tartaric acid as a fuel whilst demonstrating the performance of this material as a n-type photoactive layer in all-oxide solar cells. It is shown that the solution combustion synthesis (SCS) method enables the formation of pure crystal phase FeMnO3 with controllable particle size. XRD pattern and morphology images from TEM confirm the purity of FeMnO3 phase and the relatively small crystallite size (∼13 nm), firstly reported in the literature. Moreover, to assemble a network of connected FeMnO3 nanoparticles, ß-alanine was used as a capping agent and dimethylformamide (DMF) as a polar aprotic solvent for the colloidal dispersion of FeMnO3 NPs. This procedure yields a ∼500 nm thick FeMnO3 n-type photoactive layer. The proposed method is crucial to obtain functional solution processed NiO/FeMnO3 heterojunction inorganic photovoltaics. Photovoltaic performance and solar cell device limitations of the NiO/FeMnO3-based heterojunction solar cells are presented.

6.
Materials (Basel) ; 13(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187216

RESUMEN

The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.

7.
Nanomaterials (Basel) ; 10(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019734

RESUMEN

Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a ß-alanine surface treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally stable inverted PSCs. The improved device performance due to ß-alanine-treated Cu:NiOx HTL is attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap density in the bulk perovskite active layer. The ß-alanine surface treatment process on Cu:NiOx HTL eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance under accelerated heat lifetime conditions. By using the proposed surface treatment, we report optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h lifetime under accelerated heat lifetime conditions (60 °C, N2).

8.
Materials (Basel) ; 13(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718083

RESUMEN

We show that the addition of 1% (v/v) nitrobenzene within the perovskite formulation can be used as a method to improve the power conversion efficiency and reliability performance of methylammonium-free (CsFA) inverted perovskite solar cells. The addition of nitrobenzene increased power conversion efficiency (PCE) owing to defect passivation and provided smoother films, resulting in hybrid perovskite solar cells (PVSCs) with a narrower PCE distribution. Moreover, the nitrobenzene additive methylammonium-free hybrid PVSCs exhibit a prolonged lifetime compared with additive-free PVSCs owing to enhanced air and moisture degradation resistance.

9.
Chempluschem ; 85(7): 1379-1388, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32267088

RESUMEN

Understanding of photochemical charge transfer processes at nanoscale heterojunctions is essential in developing effective catalysts. Here, we utilize a controllable synthesis method and a combination of optical absorption, photoluminescence, and electrochemical impedance spectroscopic studies to investigate the effect of MoS2 nanosheet lateral dimension and edge length size on the photochemical behavior of MoS2 -modified graphitic carbon nitride (g-C3 N4 ) heterojunctions. These nano-heterostructures, which comprise interlayer junctions with variable area (i. e., MoS2 lateral size ranges from 18 nm to 52 nm), provide a size-tunable interfacial charge transfer through the MoS2 /g-C3 N4 contacts, while exposing a large fraction of surface MoS2 edge sites available for the hydrogen evolution reaction. Importantly, modification of g-C3 N4 with MoS2 layers of 39±5 nm lateral size (20 wt % loading) creates interfacial contacts with relatively large number of MoS2 edge sites and efficient electronic transport phenomena, yielding a high photocatalytic H2 -production activity of 1497 µmol h-1 gcat -1 and an apparent QY of 3.3 % at 410 nm light irradiation. This study thus offers a design strategy to improve light energy conversion efficiency of catalysts by engineering interfaces at the nanoscale in 2D-layered heterojunction materials.

10.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739544

RESUMEN

Solution processed γ-Fe2O3 nanoparticles via the solvothermal colloidal synthesis in conjunction with ligand-exchange method are used for interface modification of the top electrode in inverted perovskite solar cells. In comparison to more conventional top electrodes such as PC(70)BM/Al and PC(70)BM/AZO/Al, we show that incorporation of a γ-Fe2O3 provides an alternative solution processed top electrode (PC(70)BM/γ-Fe2O3/Al) that not only results in comparable power conversion efficiencies but also improved thermal stability of inverted perovskite photovoltaics. The origin of improved stability of inverted perovskite solar cells incorporating PC(70)BM/ γ-Fe2O3/Al under accelerated heat lifetime conditions is attributed to the acidic surface nature of γ-Fe2O3 and reduced charge trapped density within PC(70)BM/ γ-Fe2O3/Al top electrode interfaces.

11.
ACS Appl Energy Mater ; 2(3): 2276-2287, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31168522

RESUMEN

We present the functionalization process of a conductive and transparent CuAlO2/Cu-O hole-transporting layer (HTL). The CuAlO2/Cu-O powders were developed by flame spray pyrolysis and their stabilized dispersions were treated by sonication and centrifugation methods. We show that when the supernatant part of the treated CuAlO2/Cu-O dispersions is used for the development of CuAlO2/Cu-O HTLs the corresponding inverted perovskite-based solar cells show improved functionality and power conversion efficiency of up to 16.3% with negligible hysteresis effect.

12.
Adv Sci (Weinh) ; 5(5): 1701029, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29876223

RESUMEN

The synthesis and characterization of low-temperature solution-processable monodispersed nickel cobaltite (NiCo2O4) nanoparticles (NPs) via a combustion synthesis is reported using tartaric acid as fuel and the performance as a hole transport layer (HTL) for perovskite solar cells (PVSCs) is demonstrated. NiCo2O4 is a p-type semiconductor consisting of environmentally friendly, abundant elements and higher conductivity compared to NiO. It is shown that the combustion synthesis of spinel NiCo2O4 using tartaric acid as fuel can be used to control the NPs size and provide smooth, compact, and homogeneous functional HTLs processed by blade coating. Study of PVSCs with different NiCo2O4 thickness as HTL reveals a difference on hole extraction efficiency, and for 15 nm, optimized thickness enhanced hole carrier collection is achieved. As a result, p-i-n structure of PVSCs with 15 nm NiCo2O4 HTLs shows reliable performance and power conversion efficiency values in the range of 15.5% with negligible hysteresis.

13.
ACS Appl Mater Interfaces ; 9(16): 14136-14144, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28357861

RESUMEN

High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.

14.
ChemSusChem ; 8(24): 4209-15, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26663820

RESUMEN

The application of conjugated materials in organic photovoltaics (OPVs) is usually demonstrated in lab-scale spin-coated devices that are processed under controlled inert conditions. Although this is a necessary step to prove high efficiency, testing of promising materials in air should be done in the early stages of research to validate their real potential for low-cost, solution-processed, and large-scale OPVs. Also relevant for approaching commercialization needs is the use of printing techniques that are compatible with upscaling. Here, solution processing of organic solar cells based on three new poly(2,7-carbazole) derivatives is efficiently transferred, without significant losses, to air conditions and to several deposition methods using a simple device architecture. High efficiencies in the range between 5.0 % and 6.3 % are obtained in (rigid) spin-coated, doctor-bladed, and (flexible) slot-die-coated devices, which surpass the reference devices based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). In contrast, inkjet printing does not provide reliable results with the presented polymers, which is attributed to their high molecular weight. When the device area in the best-performing system is increased from 9 mm(2) to 0.7 cm(2), the efficiency drops from 6.2 % to 5.0 %. Photocurrent mapping reveals inhomogeneous current generation derived from changes in the thickness of the active layer.


Asunto(s)
Carbazoles/química , Suministros de Energía Eléctrica , Polímeros/química , Energía Solar , Aire , Peso Molecular , Tiadiazoles/química , Tiofenos/química
15.
ACS Appl Mater Interfaces ; 7(44): 24608-15, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26468993

RESUMEN

A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as the top electrode is presented. The inverted OPVs without a hole-transporting layer (HTL) exhibit a significant gain in hole-carrier selectivity and power-conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO-ZnO-poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)-Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtaining fully operational solar cell devices without HTL. Moreover, accelerated stability tests under damp heat conditions (RH = 85% and T = 65 °C) performed to nonencapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high-performance polymer-fullerene bulk heterojunction material systems demonstrating 6.5% power-conversion efficiencies.

16.
Chemphyschem ; 16(6): 1134-54, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25684171

RESUMEN

Recent years have seen considerable advances in organic photovoltaics (OPVs), most notably a significant increase in their efficiency, from around 4 % to over 10 %. The stability of these devices, however, continues to remain an issue that needs to be resolved to enable their commercialization. This review discusses the main degradation processes of OPVs and recent methods that help to increase device stability and lifetime. One of the most effective steps that can be taken to increase the lifetime of OPVs is their encapsulation, which protects them from atmospheric degradation. Efficient encapsulation is essential for long-term device performance, but it is equally important for the commercialization of OPVs to strike a balance between achieving the maximum device protection possible and using low-cost processing for their encapsulation. Various encapsulation techniques are discussed herein, with emphasis on their cost effectiveness and their overall suitability for commercial applications.

17.
Nano Lett ; 8(9): 2806-13, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18683989

RESUMEN

The technological attraction in organic solar cells is their compatibility to printing processes. However, up to today, nearly no literature on "printed" organic solar cells have been published and the major body of the research work was done by spin coating or blading techniques. Transferring the spin-coating or doctor blading process currently used for the fabrication of bulk heterojunction solar cell to a printing process holds morphological challenges that have not been observed or reported up to today. We highlight these challenges and we show that inkjet printing of organic bulk heterojunction solar cells requires completely novel approaches and skill sets compared to the current state of the art. By adjusting the chemical properties of the poly(3-hexylthiophene) polymer donor and by using our recently developed inkjet solvent mixture, we have gained control over the nanomorphology of poly(3-hexylthiophene):fullerene blends during the printing process and report a new record power conversion efficiency of 3.5% for inkjet printed poly(3-hexylthiophene):fullerene based solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...