Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569387

RESUMEN

Permeabilization of mitochondrial membrane by proteins of the BCL-2 family is a key decisive event in the induction of apoptosis in mammalian cells. Although yeast does not have homologs of the BCL-2 family, when these are expressed in yeast, they modulate the survival of cells in a way that corresponds to their activity in mammalian cells. The yeast gene, alternatively referred to as BXI1 or YBH3, encodes for membrane protein in the endoplasmic reticulum that was, contradictorily, shown to either inhibit Bax or to be required for Bax activity. We have tested the effect of the deletion of this gene on the pro-apoptotic activity of Bax and Bak and the anti-apoptotic activity of Bcl-XL and Bcl-2, as well on survival after treatment with inducers of regulated cell death in yeast, hydrogen peroxide and acetic acid. While deletion resulted in increased sensitivity to acetic acid, it did not affect the sensitivity to hydrogen peroxide nor to BCL-2 family members. Thus, our results do not support any model in which the activity of BCL-2 family members is directly affected by BXI1 but rather indicate that it may participate in modulating survival in response to some specific forms of stress.


Asunto(s)
Peróxido de Hidrógeno , Saccharomyces cerevisiae , Animales , Apoptosis/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Supervivencia Celular , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298346

RESUMEN

Exposure of living cells to non-thermal plasma produced in various electrical discharges affects cell physiology and often results in cell death. Even though plasma-based techniques have started finding practical applications in biotechnology and medicine, the molecular mechanisms of interaction of cells with plasma remain poorly understood. In this study, the involvement of selected cellular components or pathways in plasma-induced cell killing was studied employing yeast deletion mutants. The changes in yeast sensitivity to plasma-activated water were observed in mutants with the defect in mitochondrial functions, including transport across the outer mitochondrial membrane (∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0) and assumed signaling to the nucleus (∆mdl1, ∆yme1). Together these results indicate that mitochondria play an important role in plasma-activated water cell killing, both as the target of the damage and the participant in the damage signaling, which may lead to the induction of cell protection. On the other hand, our results show that neither mitochondria-ER contact sites, UPR, autophagy, nor proteasome play a major role in the protection of yeast cells from plasma-induced damage.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Autofagia , Núcleo Celular/metabolismo
3.
Microorganisms ; 9(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34683364

RESUMEN

Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.

4.
Can J Microbiol ; 64(6): 367-375, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29438626

RESUMEN

Interactions of living cells with cold plasma of electrical discharges affect cell physiology, often resulting in the loss of viability. However, the mechanisms involved in cell killing are poorly understood, and dissection of cellular pathways or structures affected by plasma using simple eukaryotic models is needed. Using selected genetic mutants of yeast (Saccharomyces cerevisiae), we investigated the role of oxidative stress and yeast apoptosis in plasma-induced cell killing. Increased sensitivity of yeast strains deficient in superoxide dismutases indicated that reactive oxygen species generated in the plasma are among the most prominent factors involved in killing of yeast cells. In mutant strains with a deletion of the key components of yeast apoptotic pathway, the sensitivity of cells towards the plasma treatment remained unaffected. Yeast apoptosis, thus, does not appear to play a significant role in plasma-induced cell killing of yeast.


Asunto(s)
Apoptosis , Estrés Oxidativo , Gases em Plasma/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA