Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; 19(3): 984-999, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857791

RESUMEN

Endoplasmic reticulum stress is an emerging significant player in the molecular pathology of connective tissue disorders. In response to endoplasmic reticulum stress, cells can upregulate macroautophagy/autophagy, a fundamental cellular homeostatic process used by cells to degrade and recycle proteins or remove damaged organelles. In these scenarios, autophagy activation can support cell survival. Here we demonstrated by in vitro and in vivo approaches that megakaryocytes derived from col6a1-/- (collagen, type VI, alpha 1) null mice display increased intracellular retention of COL6 polypeptides, endoplasmic reticulum stress and apoptosis. The unfolded protein response is activated in col6a1-/- megakaryocytes, as evidenced by the upregulation of molecular chaperones, by the increased splicing of Xbp1 mRNA and by the higher level of the pro-apoptotic regulator DDIT3/CHOP. Despite the endoplasmic reticulum stress, basal autophagy is impaired in col6a1-/- megakaryocytes, which show lower BECN1 levels and reduced autophagosome maturation. Starvation and rapamycin treatment rescue the autophagic flux in col6a1-/- megakaryocytes, leading to a decrease in intracellular COL6 polypeptide retention, endoplasmic reticulum stress and apoptosis. Furthermore, megakaryocytes cultured from peripheral blood hematopoietic progenitors of patients affected by Bethlem myopathy and Ullrich congenital muscular dystrophy, two COL6-related disorders, displayed increased apoptosis, endoplasmic reticulum stress and impaired autophagy. These data demonstrate that genetic disorders of collagens, endoplasmic reticulum stress and autophagy regulation in megakaryocytes may be interrelated.Abbreviations: 7-AAD: 7-amino-actinomycin D; ATF: activating transcriptional factor; BAX: BCL2 associated X protein; BCL2: B cell leukemia/lymphoma 2; BCL2L1/Bcl-xL: BCL2-like 1; BM: bone marrow; COL6: collagen, type VI; col6a1-/-: mice that are null for Col6a1; DDIT3/CHOP/GADD153: DNA-damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; reticulophagy: endoplasmic reticulum-selective autophagy; HSPA5/Bip: heat shock protein 5; HSP90B1/GRP94: heat shock protein 90, beta (Grp94), member 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; Mk: megakaryocytes; MTOR: mechanistic target of rapamycin kinase; NIMV: noninvasive mechanical ventilation; PI3K: phosphoinositide 3-kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; RT-qPCR: reverse transcription-quantitative real-time PCR; ROS: reactive oxygen species; SERPINH1/HSP47: serine (or cysteine) peptidase inhibitor, clade H, member 1; sh-RNA: short hairpin RNA; SOCE: store operated calcium entry; UCMD: Ullrich congenital muscular dystrophy; UPR: unfolded protein response; WIPI2: WD repeat domain, phosphoinositide-interacting 2; WT: wild type; XBP1: X-box binding protein 1.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas , Ratones , Animales , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Megacariocitos/metabolismo , Colágeno Tipo VI , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés del Retículo Endoplásmico , Chaperón BiP del Retículo Endoplásmico , Proteínas Proto-Oncogénicas c-bcl-2 , Sirolimus
2.
J Cachexia Sarcopenia Muscle ; 13(4): 2211-2224, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35593053

RESUMEN

BACKGROUND: Maintaining healthy mitochondria is mandatory for muscle viability and function. An essential surveillance mechanism targeting defective and harmful mitochondria to degradation is the selective form of autophagy called mitophagy. Ambra1 is a multifaceted protein with well-known autophagic and mitophagic functions. However, the study of its role in adult tissues has been extremely limited due to the embryonic lethality caused by full-body Ambra1 deficiency. METHODS: To establish the role of Ambra1 as a positive regulator of mitophagy, we exploited in vivo overexpression of a mitochondria-targeted form of Ambra1 in skeletal muscle. To dissect the consequence of Ambra1 inactivation in skeletal muscle, we generated muscle-specific Ambra1 knockout (Ambra1fl/fl :Mlc1f-Cre) mice. Mitochondria-enriched fractions were obtained from muscles of fed and starved animals to investigate the dynamics of the mitophagic flux. RESULTS: Our data show that Ambra1 has a critical role in the mitophagic flux of adult murine skeletal muscle and that its genetic inactivation leads to mitochondria alterations and myofibre remodelling. Ambra1 overexpression in wild-type muscles is sufficient to enhance mitochondria clearance through the autophagy-lysosome system. Consistently with this, Ambra1-deficient muscles display an abnormal accumulation of the mitochondrial marker TOMM20 by +76% (n = 6-7; P < 0.05), a higher presence of myofibres with swollen mitochondria by +173% (n = 4; P < 0.05), and an alteration in the maintenance of the mitochondrial membrane potential and a 34% reduction in the mitochondrial respiratory complex I activity (n = 4; P < 0.05). Lack of Ambra1 in skeletal muscle leads to impaired mitophagic flux, without affecting the bulk autophagic process. This is due to a significantly decreased recruitment of DRP1 (n = 6-7 mice; P < 0.01) and Parkin (n = 6-7 mice; P < 0.05) to the mitochondrial compartment, when compared with controls. Ambra1-deficient muscles also show a marked dysregulation of the endolysosome compartment, as the incidence of myofibres with lysosomal accumulation is 20 times higher than wild-type muscles (n = 4; P < 0.05). Histologically, Ambra1-deficient muscles of both 3- and 6-month-old animals display a significant decrease of myofibre cross-sectional area and a 52% reduction in oxidative fibres (n = 6-7; P < 0.05), thus highlighting a role for Ambra1 in the proper structure and activity of skeletal muscle. CONCLUSIONS: Our study indicates that Ambra1 is critical for skeletal muscle mitophagy and for the proper maintenance of functional mitochondria.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Mitocondrias , Mitofagia , Músculo Esquelético , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Autofagia , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia/genética , Músculo Esquelético/metabolismo
3.
Blood Adv ; 5(23): 5150-5163, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34547769

RESUMEN

Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI-related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI-null mouse model (Col6a1-/-), we found that collagen VI-null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1-/- megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1-/- mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1-/- mice. Peripheral blood platelets of patients affected by collagen VI-related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI-related diseases.


Asunto(s)
Plaquetas , Señalización del Calcio , Animales , Plaquetas/metabolismo , Colágeno , Humanos , Megacariocitos/metabolismo , Ratones , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
4.
Oxid Med Cell Longev ; 2021: 7658501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992716

RESUMEN

Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several µM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Estilbenos/metabolismo , Animales , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Factores de Transcripción , Pez Cebra
5.
Front Cell Dev Biol ; 8: 580933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134297

RESUMEN

The induction of autophagy, the catabolic pathway by which damaged or unnecessary cellular components are subjected to lysosome-mediated degradation and recycling, is impaired in Collagen VI (COL6) null mice and COL6-related myopathies. This autophagic impairment causes an accumulation of dysfunctional mitochondria, which in turn leads to myofiber degeneration. Our previous work showed that reactivation of autophagy in COL6-related myopathies is beneficial for muscle structure and function both in the animal model and in patients. Here we show that pterostilbene (Pt)-a non-toxic polyphenol, chemically similar to resveratrol but with a higher bioavailability and metabolic stability-strongly promotes in vivo autophagic flux in the skeletal muscle of both wild-type and COL6 null mice. Reactivation of autophagy in COL6-deficient muscles was also paralleled by several beneficial effects, including significantly decreased incidence of spontaneous apoptosis, recovery of ultrastructural defects and muscle remodeling. These findings point at Pt as an effective autophagy-inducing nutraceutical for skeletal muscle with great potential in counteracting the major pathogenic hallmarks of COL6-related myopathies, a valuable feature that may be also beneficial in other muscle pathologies characterized by defective regulation of the autophagic machinery.

6.
Zebrafish ; 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32320344

RESUMEN

In zebrafish, two paralogous genes, activating molecule in beclin-1 (BECN1)-regulated autophagy ambra1a and ambra1b, both required for the autophagic process and during development, encode the protein AMBRA1, a positive regulator of early steps of autophagosome formation. As transcripts for both genes are expressed during embryogenesis in the heart region, in this work, we investigated the effects of ambra1a and ambra1b knockdown on heart development by means of morpholino oligonucleotides (MOs). Silencing of the two proteins by MOs directed against the ATG translation initiation codon affects cardiac morphogenesis, resulting in a small, string-like heart with pericardial edema, whereas treatment with splice-blocking MOs does not lead to overt cardiac phenotypes, thus revealing the relevance of maternally supplied ambra1 transcripts for heart development. Co-injection of both ATG-MOs determines a more severe cardiac phenotype, with prominent pericardial edema. Whole-mount in situ hybridization (WMISH) for myosin light chain 7 (myl7), as well as ambra1 ATG-MO microinjection in zebrafish transgenic line expressing green fluorescent protein in the heart, revealed defects with the heart jogging process followed by imperfect cardiac looping. Moreover, WMISH of homeodomain transcription factor 2 isoform c (pitx2c) transcripts showed both bilateral and reversed pitx2c expression in morphants. The morphants' cardiac phenotypes were effectively rescued by co-injection of MOs with human AMBRA1 (hAMBRA1) messenger RNA (mRNA), pointing at the conservation of Ambra1 functions during evolution. Co-injections of ambra1 ATG-MOs with a hAMBRA1 mRNA mutated in the protein phosphatase 2a (PP2A) binding sites (hAMBRA1PXP) were not able to rescue the cardiac phenotypes, at the difference from wild-type hAMBRA1 mRNA, and treatment of zebrafish embryos with the specific PP2A inhibitor cantharidin resulted in similar developmental cardiac defects. These results suggest a critical role for AMBRA1 in vertebrate heart development, likely involving the binding site for the PP2A phosphatase.

8.
J Mol Med (Berl) ; 97(6): 793-801, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30927046

RESUMEN

The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myopathies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1-/- (collagen VI-null) mice. Col6a1-/- mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1-/- mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1-/- myoblasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1-/- myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1-/- myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1-/- mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1-/- myoblasts. KEY MESSAGES: Col6a1-/- mice have decreased level of plasma adiponectin. Myoblasts from Col6a1-/- muscles have impaired local adiponectin secretion. Col6a1-/- myoblasts reveal altered metabolic features. Addition of exogenous adiponectin ameliorates Col6a1-/- metabolic features.


Asunto(s)
Adiponectina/metabolismo , Colágeno Tipo VI/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Adiponectina/sangre , Animales , Ayuno/sangre , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Enfermedades Musculares/sangre , Mioblastos/metabolismo , Consumo de Oxígeno
9.
Autophagy ; 15(8): 1438-1454, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30806141

RESUMEN

The EPG5 protein is a RAB7A effector involved in fusion specificity between autophagosomes and late endosomes or lysosomes during macroautophagy/autophagy. Mutations in the human EPG5 gene cause a rare and severe multisystem disorder called Vici syndrome. In this work, we show that zebrafish epg5-/- mutants from both heterozygous and incrossed homozygous matings are viable and can develop to the age of sexual maturity without conspicuous defects in external appearance. In agreement with the dysfunctional autophagy of Vici syndrome, western blot revealed higher levels of the Lc3-II autophagy marker in epg5-/- mutants with respect to wild type controls. Moreover, starvation elicited higher accumulation of Lc3-II in epg5-/- than in wild type larvae, together with a significant reduction of skeletal muscle birefringence. Accordingly, muscle ultrastructural analysis revealed accumulation of degradation-defective autolysosomes in starved epg5-/- mutants. By aging, epg5-/- mutants showed impaired motility and muscle thinning, together with accumulation of non-degradative autophagic vacuoles. Furthermore, epg5-/- adults displayed morphological alterations in gonads and heart. These findings point at the zebrafish epg5 mutant as a valuable model for EPG5-related disorders, thus providing a new tool for dissecting the contribution of EPG5 on the onset and progression of Vici syndrome as well as for the screening of autophagy-stimulating drugs. Abbreviations: ATG: autophagy related; cDNA: complementary DNA; DIG: digoxigenin; dpf: days post-fertilization; EGFP: enhanced green fluorescent protein; EPG: ectopic P granules; GFP: green fluorescent protein; hpf: hours post-fertilization; IL1B: interleukin 1 beta; Lc3-II: lipidated Lc3; mpf: months post-fertilization; mRNA: messenger RNA; NMD: nonsense-mediated mRNA decay; PCR: polymerase chain reaction; qPCR: real time-polymerase chain reaction; RAB7A/RAB7: RAB7a, member RAS oncogene family; RACE: rapid amplification of cDNA ends; RFP: red fluorescent protein; RT-PCR: reverse transcriptase-polymerase chain reaction; SEM: standard error of the mean; sgRNA: guide RNA; UTR: untranslated region; WMISH: whole mount in situ hybridization; WT: wild type.


Asunto(s)
Agenesia del Cuerpo Calloso/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Catarata/metabolismo , Técnicas de Inactivación de Genes , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Células Caliciformes/patología , Intestinos/patología , Intestinos/ultraestructura , Larva/ultraestructura , Lisosomas/metabolismo , Fusión de Membrana , Modelos Biológicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutagénesis/genética , Mutación/genética , Especificidad de Órganos , Pez Cebra/embriología , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
10.
Dev Cell ; 47(5): 592-607.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513302

RESUMEN

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular , Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HeLa , Homeostasis , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Proteína Fosfatasa 2/metabolismo , Linfocitos T/citología
11.
Front Physiol ; 9: 1129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174616

RESUMEN

Collagen VI (ColVI) is an abundant and distinctive extracellular matrix protein secreted by fibroblasts in different tissues. Human diseases linked to mutations on ColVI genes are primarily affecting skeletal muscle due to non-cell autonomous myofiber defects. To date, it is not known whether and how fibroblast homeostasis is affected by ColVI deficiency, a critical missing information as this may strengthen the use of patients' fibroblasts for preclinical purposes. Here, we established primary and immortalized fibroblast cultures from ColVI null (Col6a1-/-) mice, the animal model of ColVI-related diseases. We found that, under nutrient-stringent condition, lack of ColVI affects fibroblast survival, leading to increased apoptosis. Moreover, Col6a1-/- fibroblasts display defects in the autophagy/lysosome machinery, with impaired clearance of autophagosomes and failure of Parkin-dependent mitophagy. Col6a1-/- fibroblasts also show an increased activation of the Akt/mTOR pathway, compatible with the autophagy impairment, and adhesion onto purified ColVI elicits a major effect on the autophagic flux. Our findings reveal that ColVI ablation in fibroblasts impacts on autophagy regulation and cell survival, thus pointing at the new concept that this cell type may contribute to the pathological features of ColVI-related diseases.

12.
Autophagy ; 12(12): 2484-2495, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27656840

RESUMEN

A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.


Asunto(s)
Autofagia , Colágeno Tipo VI/genética , Dieta con Restricción de Proteínas , Enfermedades Musculares/dietoterapia , Adulto , Alanina/metabolismo , Biomarcadores/metabolismo , Biopsia , Composición Corporal , Contractura/metabolismo , Contractura/patología , Contractura/fisiopatología , Femenino , Humanos , Ácido Láctico/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculos/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/fisiopatología , Distrofias Musculares/congénito , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Proyectos Piloto , Esclerosis/metabolismo , Esclerosis/patología , Esclerosis/fisiopatología , Caminata , Adulto Joven
13.
Autophagy ; 11(12): 2142-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26565691

RESUMEN

Autophagy is a self-degradative process responsible for the clearance of damaged or unnecessary cellular components. We have previously found that persistence of dysfunctional organelles due to autophagy failure is a key event in the pathogenesis of COL6/collagen VI-related myopathies, and have demonstrated that reactivation of a proper autophagic flux rescues the muscle defects of Col6a1-null (col6a1(-/-)) mice. Here we show that treatment with spermidine, a naturally occurring nontoxic autophagy inducer, is beneficial for col6a1(-/-) mice. Systemic administration of spermidine in col6a1(-/-) mice reactivated autophagy in a dose-dependent manner, leading to a concurrent amelioration of the histological and ultrastructural muscle defects. The beneficial effects of spermidine, together with its being easy to administer and the lack of overt side effects, open the field for the design of novel nutraceutical strategies for the treatment of muscle diseases characterized by autophagy impairment.


Asunto(s)
Autofagia/genética , Colágeno Tipo VI/deficiencia , Músculos/metabolismo , Enfermedades Musculares/patología , Espermidina/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Autofagia/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Músculos/patología
14.
Front Aging Neurosci ; 6: 215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191266

RESUMEN

The four-and-half LIM domain protein 1 (FHL1) is highly expressed in skeletal and cardiac muscle. Mutations of the FHL1 gene have been associated with diverse chronic myopathies including reducing body myopathy, rigid spine syndrome (RSS), and Emery-Dreifuss muscular dystrophy. We investigated a family with a mutation (p.C150R) in the second LIM domain of FHL1. In this family, a brother and a sister were affected by RSS, and their mother had mild lower limbs weakness. The 34-year-old female had an early and progressive rigidity of the cervical spine and severe respiratory insufficiency. Muscle mass evaluated by DXA was markedly reduced, while fat mass was increased to 40%. CT scan showed an almost complete substitution of muscle by fibro-adipose tissue. Muscle biopsy showed accumulation of FHL1 throughout the cytoplasm and around myonuclei into multiprotein aggregates with aggresome/autophagy features as indicated by ubiquitin, p62, and LC3 labeling. DNA deposits, not associated with nuclear lamina components and histones, were also detected in the aggregates, suggesting nuclear degradation. Ultrastructural analysis showed the presence of dysmorphic nuclei, accumulation of tubulofilamentous and granular material, and perinuclear accumulation of autophagic vacuoles. These data point to involvement of the aggresome-autophagy pathway in the pathophysiological mechanism underlying the muscle pathology of FHL1 C150R mutation.

15.
PLoS One ; 9(6): e99210, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24922546

RESUMEN

The essential role of autophagy in muscle homeostasis has been clearly demonstrated by phenotype analysis of mice with muscle-specific inactivation of genes encoding autophagy-related proteins. Ambra1 is a key component of the Beclin 1 complex and, in zebrafish, it is encoded by two paralogous genes, ambra1a and ambra1b, both required for normal embryogenesis and larval development. In this study we focused on the function of Ambra1, a positive regulator of the autophagic process, during skeletal muscle development by means of morpholino (MO)-mediated knockdown and compared the phenotype of zebrafish Ambra1-depleted embryos with that of Ambra1gt/gt mouse embryos. Morphological analysis of zebrafish morphant embryos revealed that silencing of ambra1 impairs locomotor activity and muscle development, as well as myoD1 expression. Skeletal muscles in ATG-morphant embryos displayed severe histopathological changes and contained only small areas of organized myofibrils that were widely dispersed throughout the cell. Double knockdown of ambra1a and ambra1b resulted in a more severe phenotype whereas defects were much less evident in splice-morphants. The morphants phenotypes were effectively rescued by co-injection with human AMBRA1 mRNA. Together, these results indicate that ambra1a and ambra1b are required for the correct development and morphogenesis of skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Técnicas de Silenciamiento del Gen , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Birrefringencia , Proliferación Celular , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Morfolinos/farmacología , Movimiento , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/anomalías , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Miosinas/metabolismo , Factor de Transcripción PAX7/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
16.
PLoS Curr ; 52013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24292657

RESUMEN

Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under development for Duchenne and other muscular dystrophies. The Akt signaling cascade is one of the main pathways involved in protein synthesis and autophagy repression and is known to be up-regulated in dystrophin null mdx mice. Results We report that autophagy is triggered by fasting in the tibialis anterior muscle of control mice but not in mdx mice. Mdx mice show persistent Akt activation upon fasting and failure to increase the expression of FoxO3 regulated autophagy and atrophy genes, such as Bnip3 and Atrogin1. We also provide evidence that autophagy is differentially regulated in mdx tibialis anterior and diaphragm muscles. Conclusions Our data support the concept that autophagy is impaired in the tibialis anterior muscle of mdx mice and that the regulation of autophagy is muscle type dependent. Differences between muscle groups should be considered during the pre-clinical development of therapeutic strategies addressing muscle metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...