Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1297088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500949

RESUMEN

Objective: To develop an artificial intelligence (AI) model able to perform both segmentation of hand joint ultrasound images for osteophytes, bone, and synovium and perform osteophyte severity scoring following the EULAR-OMERACT grading system (EOGS) for hand osteoarthritis (OA). Methods: One hundred sixty patients with pain or reduced function of the hands were included. Ultrasound images of the metacarpophalangeal (MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP), and first carpometacarpal (CMC1) joints were then manually segmented for bone, synovium and osteophytes and scored from 0 to 3 according to the EOGS for OA. Data was divided into a training, validation, and test set. The AI model was trained on the training data to perform bone, synovium, and osteophyte identification on the images. Based on the manually performed image segmentation, an AI was trained to classify the severity of osteophytes according to EOGS from 0 to 3. Percent Exact Agreement (PEA) and Percent Close Agreement (PCA) were assessed on individual joints and overall. PCA allows a difference of one EOGS grade between doctor assessment and AI. Results: A total of 4615 ultrasound images were used for AI development and testing. The developed AI model scored on the test set for the MCP joints a PEA of 76% and PCA of 97%; for PIP, a PEA of 70% and PCA of 97%; for DIP, a PEA of 59% and PCA of 94%, and CMC a PEA of 50% and PCA of 82%. Combining all joints, we found a PEA between AI and doctor assessments of 68% and a PCA of 95%. Conclusion: The developed AI model can perform joint ultrasound image segmentation and severity scoring of osteophytes, according to the EOGS. As proof of concept, this first version of the AI model is successful, as the agreement performance is slightly higher than previously found agreements between experts when assessing osteophytes on hand OA ultrasound images. The segmentation of the image makes the AI explainable to the doctor, who can immediately see why the AI applies a given score. Future validation in hand OA cohorts is necessary though.

2.
Ann Rheum Dis ; 79(9): 1189-1193, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32503859

RESUMEN

OBJECTIVES: We have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-OMERACT grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist. METHODS: The images were graded by an expert rheumatologist according to the EULAR-OMERACT synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test. RESULTS: With 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%. CONCLUSIONS: Using a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.


Asunto(s)
Artritis Reumatoide/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Redes Neurales de la Computación , Reumatología/métodos , Índice de Severidad de la Enfermedad , Ultrasonografía/estadística & datos numéricos , Adulto , Ensayos Clínicos como Asunto , Femenino , Humanos , Articulaciones/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sinovitis/diagnóstico por imagen , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...