Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 34(7): br9, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37017489

RESUMEN

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans. However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans. We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Peroxisomas/metabolismo , Vesículas Transportadoras/metabolismo , Endosomas/metabolismo
2.
bioRxiv ; 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36711994

RESUMEN

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans . However, the cellular function of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina, but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent wide-spread leakage. Here, we tested if peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans . We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking by knocking out pxdA significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.

4.
Annu Rev Cell Dev Biol ; 38: 155-178, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35905769

RESUMEN

Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.


Asunto(s)
Dineínas , Cinesinas , Actinas/metabolismo , Animales , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Células Vegetales/metabolismo
5.
Elife ; 102021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34882091

RESUMEN

In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS-Hook-FHIP ('FHF') cargo adaptor complex links dynein to cargo in humans and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein 'interactome' of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 colocalize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A, and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS-Hook-FHIP complexes is one mechanism dynein uses to achieve cargo specificity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dineínas Citoplasmáticas/metabolismo , Endosomas/genética , Endosomas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células Cultivadas , Dineínas Citoplasmáticas/genética , Humanos , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
6.
Biophys J ; 120(22): 4918-4931, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34687720

RESUMEN

Cellular functions such as autophagy, cell signaling, and vesicular trafficking involve the retrograde transport of motor-driven cargo along microtubules. Typically, newly formed cargo engages in slow undirected movement from its point of origin before attaching to a microtubule. In some cell types, cargo destined for delivery to the perinuclear region relies on capture at dynein-enriched loading zones located near microtubule plus ends. Such systems include extended cell regions of neurites and fungal hyphae, where the efficiency of the initial diffusive loading process depends on the axial distribution of microtubule plus ends relative to the initial cargo position. We use analytic mean first-passage time calculations and numerical simulations to model diffusive capture processes in tubular cells, exploring how the spatial arrangement of microtubule plus ends affects the efficiency of retrograde cargo transport. Our model delineates the key features of optimal microtubule arrangements that minimize mean cargo capture times. Namely, we show that configurations with a single microtubule plus end abutting the distal tip and broadly distributed other plus ends allow for efficient capture in a variety of different scenarios for retrograde transport. Live-cell imaging of microtubule plus ends in Aspergillus nidulans hyphae indicates that their distributions exhibit these optimal qualitative features. Our results highlight important coupling effects between the distribution of microtubule tips and retrograde cargo transport, providing guiding principles for the spatial arrangement of microtubules within tubular cell regions.


Asunto(s)
Aspergillus nidulans , Microtúbulos , Aspergillus nidulans/metabolismo , Transporte Biológico , Dineínas/metabolismo , Microtúbulos/metabolismo
8.
Mol Biol Cell ; 32(6): 492-503, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476181

RESUMEN

In canonical microtubule-based transport, adaptor proteins link cargoes to dynein and kinesin motors. Recently, an alternative mode of transport known as "hitchhiking" was discovered, where cargoes achieve motility by hitching a ride on already-motile cargoes, rather than attaching to a motor protein. Hitchhiking has been best studied in two filamentous fungi, Aspergillus nidulans and Ustilago maydis. In U. maydis, ribonucleoprotein complexes, peroxisomes, lipid droplets (LDs), and endoplasmic reticulum hitchhike on early endosomes (EEs). In A. nidulans, peroxisomes hitchhike using a putative molecular linker, peroxisome distribution mutant A (PxdA), which associates with EEs. However, whether other organelles use PxdA to hitchhike on EEs is unclear, as are the molecular mechanisms that regulate hitchhiking. Here we find that the proper distribution of LDs, mitochondria, and preautophagosomes do not require PxdA, suggesting that PxdA is a peroxisome-specific molecular linker. We identify two new pxdA alleles, including a point mutation (R2044P) that disrupts PxdA's ability to associate with EEs and reduces peroxisome movement. We also identify a novel regulator of peroxisome hitchhiking, the phosphatase DipA. DipA colocalizes with EEs and its association with EEs relies on PxdA. Together, our data suggest that PxdA and the DipA phosphatase are specific regulators of peroxisome hitchhiking on EEs.


Asunto(s)
Proteínas Fúngicas/metabolismo , Peroxisomas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas/fisiología , Aspergillus nidulans/metabolismo , Basidiomycota/metabolismo , Transporte Biológico , Dineínas/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Cinesinas/metabolismo , Redes y Vías Metabólicas , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Peroxisomas/fisiología , Transporte de Proteínas/genética , Vesículas Transportadoras/metabolismo
9.
Biophys J ; 118(6): 1357-1369, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32061275

RESUMEN

In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular "cargos" navigate the cytoplasm by hitchhiking on motor-driven "carrier" organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.


Asunto(s)
Dineínas , Microtúbulos , Transporte Biológico , Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Orgánulos/metabolismo
10.
Mol Biol Cell ; 30(26): 3123-3135, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31664873

RESUMEN

The regulated assembly of multiple filamentous actin (F-actin) networks from an actin monomer pool is important for a variety of cellular processes. Chlamydomonas reinhardtii is a unicellular green alga expressing a conventional and divergent actin that is an emerging system for investigating the complex regulation of actin polymerization. One actin network that contains exclusively conventional F-actin in Chlamydomonas is the fertilization tubule, a mating structure at the apical cell surface in gametes. In addition to two actin genes, Chlamydomonas expresses a profilin (PRF1) and four formin genes (FOR1-4), one of which (FOR1) we have characterized for the first time. We found that unlike typical profilins, PRF1 prevents unwanted actin assembly by strongly inhibiting both F-actin nucleation and barbed-end elongation at equimolar concentrations to actin. However, FOR1 stimulates the assembly of rapidly elongating actin filaments from PRF1-bound actin. Furthermore, for1 and prf1-1 mutants, as well as the small molecule formin inhibitor SMIFH2, prevent fertilization tubule formation in gametes, suggesting that polymerization of F-actin for fertilization tubule formation is a primary function of FOR1. Together, these findings indicate that FOR1 and PRF1 cooperate to selectively and rapidly assemble F-actin at the right time and place.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Forminas/metabolismo , Profilinas/metabolismo , Polimerizacion , Tionas/farmacología , Uracilo/análogos & derivados , Uracilo/farmacología
11.
Elife ; 82019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31180322

RESUMEN

We previously discovered that competition between fission yeast actin binding proteins (ABPs) for binding F-actin facilitates their sorting to different cellular networks. Specifically, competition between endocytic actin patch ABPs fimbrin Fim1 and cofilin Adf1 enhances their activities, and prevents tropomyosin Cdc8's association with actin patches. However, these interactions do not explain how Fim1 is prevented from associating strongly with other F-actin networks such as the contractile ring. Here, we identified α-actinin Ain1, a contractile ring ABP, as another Fim1 competitor. Fim1 competes with Ain1 for association with F-actin, which is dependent upon their F-actin residence time. While Fim1 outcompetes both Ain1 and Cdc8 individually, Cdc8 enhances the F-actin bundling activity of Ain1, allowing Ain1 to generate F-actin bundles that Cdc8 can bind in the presence of Fim1. Therefore, the combination of contractile ring ABPs Ain1 and Cdc8 is capable of inhibiting Fim1's association with F-actin networks.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Tropomiosina/metabolismo , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Actinina/genética , Actinas/genética , Actinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Microscopía Fluorescente/métodos , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Imagen de Lapso de Tiempo/métodos , Tropomiosina/genética
12.
Elife ; 62017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28282023

RESUMEN

The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Multimerización de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Microscopía Fluorescente
13.
Curr Biol ; 26(20): 2697-2706, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27666967

RESUMEN

Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins.


Asunto(s)
Actinina/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Transporte de Proteínas , Citoesqueleto de Actina/metabolismo , Animales , Humanos
14.
Mol Biol Cell ; 27(11): 1821-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075176

RESUMEN

The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.


Asunto(s)
Actinina/metabolismo , Actinas/metabolismo , Citocinesis/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Humanos
15.
Mol Biol Cell ; 26(2): 283-93, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392301

RESUMEN

The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Profilinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Actinas/química , Actinas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Proteínas del Citoesqueleto/genética , Prueba de Complementación Genética , Immunoblotting , Microscopía Fluorescente , Modelos Moleculares , Mutación , Profilinas/química , Profilinas/genética , Prolina/química , Prolina/genética , Prolina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Imagen de Lapso de Tiempo/métodos
16.
Dev Cell ; 32(1): 43-53, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25543282

RESUMEN

Fission yeast cells use Arp2/3 complex and formin to assemble diverse filamentous actin (F-actin) networks within a common cytoplasm for endocytosis, division, and polarization. Although these homeostatic F-actin networks are usually investigated separately, competition for a limited pool of actin monomers (G-actin) helps to regulate their size and density. However, the mechanism by which G-actin is correctly distributed between rival F-actin networks is not clear. Using a combination of cell biological approaches and in vitro reconstitution of competition between actin assembly factors, we found that the small G-actin binding protein profilin directly inhibits Arp2/3 complex-mediated actin assembly. Profilin is therefore required for formin to compete effectively with excess Arp2/3 complex for limited G-actin and to assemble F-actin for contractile ring formation in dividing cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Homeostasis/fisiología , Profilinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Endocitosis/fisiología , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente
17.
Curr Biol ; 24(5): 579-85, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24560576

RESUMEN

Controlling the quantity and size of organelles through competition for a limited supply of components is quickly emerging as an important cellular regulatory mechanism. Cells assemble diverse actin filament (F-actin) networks for fundamental processes including division, motility, and polarization. F-actin polymerization is tightly regulated by activation of assembly factors such as the Arp2/3 complex and formins at specific times and places. We directly tested an additional hypothesis that diverse F-actin networks are in homeostasis, whereby competition for actin monomers (G-actin) is critical for regulating F-actin network size. Here we show that inhibition of Arp2/3 complex in the fission yeast Schizosaccharomyces pombe not only depletes Arp2/3-complex-mediated endocytic actin patches, but also induces a dramatic excess of formin-assembled F-actin. Conversely, disruption of formin increases the density of Arp2/3-complex-mediated patches. Furthermore, modification of actin levels significantly perturbs the fission yeast actin cytoskeleton. Increasing actin favors Arp2/3-complex-mediated actin assembly, whereas decreasing actin favors formin-mediated contractile rings. Therefore, the specific actin concentration in a cell is critical, and competition for G-actin helps regulate the proper amount of F-actin assembly for diverse processes.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Forminas , Proteínas de Microfilamentos/metabolismo , Mutación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA