Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 24, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238840

RESUMEN

BACKGROUND: Modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of genome-wide transcription factor activity (TFA) making it difficult to separate covariance and regulatory interactions. Inference of regulatory interactions and TFA requires aggregation of complementary evidence. Estimating TFA explicitly is problematic as it disconnects GRN inference and TFA estimation and is unable to account for, for example, contextual transcription factor-transcription factor interactions, and other higher order features. Deep-learning offers a potential solution, as it can model complex interactions and higher-order latent features, although does not provide interpretable models and latent features. RESULTS: We propose a novel autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor) for modeling, and a metric, explained relative variance (ERV), for interpretation of GRNs. We evaluate SupirFactor with ERV in a wide set of contexts. Compared to current state-of-the-art GRN inference methods, SupirFactor performs favorably. We evaluate latent feature activity as an estimate of TFA and biological function in S. cerevisiae as well as in peripheral blood mononuclear cells (PBMC). CONCLUSION: Here we present a framework for structure-primed inference and interpretation of GRNs, SupirFactor, demonstrating interpretability using ERV in multiple biological and experimental settings. SupirFactor enables TFA estimation and pathway analysis using latent factor activity, demonstrated here on two large-scale single-cell datasets, modeling S. cerevisiae and PBMC. We find that the SupirFactor model facilitates biological analysis acquiring novel functional and regulatory insight.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Algoritmos , Leucocitos Mononucleares , Factores de Transcripción/genética
2.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778259

RESUMEN

The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of regulatory features in genome-wide screens. Most GRN inference methods are therefore forced to model relationships between regulatory genes and their targets with expression as a proxy for the upstream independent features, complicating validation and predictions produced by modeling frameworks. Separating covariance and regulatory influence requires aggregation of independent and complementary sets of evidence, such as transcription factor (TF) binding and target gene expression. However, the complete regulatory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental feasibility, making regulatory relations difficult to infer. Some methods attempt to account for this by modeling TFA as a latent feature, but these models often use linear frameworks that are unable to account for non-linearities such as saturation, TF-TF interactions, and other higher order features. Deep learning frameworks may offer a solution, as they are capable of modeling complex interactions and capturing higher-order latent features. However, these methods often discard central concepts in biological systems modeling, such as sparsity and latent feature interpretability, in favor of increased model complexity. We propose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic data and maintains interpretability to perform GRN inference and estimate TFA as a latent feature. We demonstrate that SupirFactor outperforms current leading GRN inference methods, predicts biologically relevant TFA and elucidates functional regulatory pathways through aggregation of TFs.

3.
PLoS Comput Biol ; 17(1): e1008569, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411784

RESUMEN

The analysis of single-cell genomics data presents several statistical challenges, and extensive efforts have been made to produce methods for the analysis of this data that impute missing values, address sampling issues and quantify and correct for noise. In spite of such efforts, no consensus on best practices has been established and all current approaches vary substantially based on the available data and empirical tests. The k-Nearest Neighbor Graph (kNN-G) is often used to infer the identities of, and relationships between, cells and is the basis of many widely used dimensionality-reduction and projection methods. The kNN-G has also been the basis for imputation methods using, e.g., neighbor averaging and graph diffusion. However, due to the lack of an agreed-upon optimal objective function for choosing hyperparameters, these methods tend to oversmooth data, thereby resulting in a loss of information with regard to cell identity and the specific gene-to-gene patterns underlying regulatory mechanisms. In this paper, we investigate the tuning of kNN- and diffusion-based denoising methods with a novel non-stochastic method for optimally preserving biologically relevant informative variance in single-cell data. The framework, Denoising Expression data with a Weighted Affinity Kernel and Self-Supervision (DEWÄKSS), uses a self-supervised technique to tune its parameters. We demonstrate that denoising with optimal parameters selected by our objective function (i) is robust to preprocessing methods using data from established benchmarks, (ii) disentangles cellular identity and maintains robust clusters over dimension-reduction methods, (iii) maintains variance along several expression dimensions, unlike previous heuristic-based methods that tend to oversmooth data variance, and (iv) rarely involves diffusion but rather uses a fixed weighted kNN graph for denoising. Together, these findings provide a new understanding of kNN- and diffusion-based denoising methods. Code and example data for DEWÄKSS is available at https://gitlab.com/Xparx/dewakss/-/tree/Tjarnberg2020branch.


Asunto(s)
Algoritmos , Genómica/métodos , Análisis de la Célula Individual/métodos , Aprendizaje Automático Supervisado , Animales , Línea Celular , Bases de Datos Genéticas , Humanos , Ratones , RNA-Seq , Saccharomyces cerevisiae
4.
Nat Commun ; 8(1): 1799, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180615

RESUMEN

Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Transición Epitelial-Mesenquimal/fisiología , Empalme del ARN/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Evolución Biológica , Sistemas CRISPR-Cas , Exones/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Anfioxos , Masculino , Mutación , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Strongylocentrotus purpuratus , Urocordados , Pez Cebra
5.
Nat Commun ; 5: 4830, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25189217

RESUMEN

During the development of the central nervous system (CNS), combinations of transcription factors and signalling molecules orchestrate patterning, specification and differentiation of neural cell types. In vertebrates, three types of melanin-containing pigment cells, exert a variety of functional roles including visual perception. Here we analysed the mechanisms underlying pigment cell specification within the CNS of a simple chordate, the ascidian Ciona intestinalis. Ciona tadpole larvae exhibit a basic chordate body plan characterized by a small number of neural cells. We employed lineage-specific transcription profiling to characterize the expression of genes downstream of fibroblast growth factor signalling, which govern pigment cell formation. We demonstrate that FGF signalling sequentially imposes a pigment cell identity at the expense of anterior neural fates. We identify FGF-dependent and pigment cell-specific factors, including the small GTPase, Rab32/38 and demonstrated its requirement for the pigmentation of larval sensory organs.


Asunto(s)
Ciona intestinalis/crecimiento & desarrollo , Células Epiteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Transducción de Señal/fisiología , Animales , Electroporación , Citometría de Flujo , Perfilación de la Expresión Génica , Hibridación in Situ , Larva/fisiología , Análisis por Micromatrices , Pigmentos Biológicos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...