Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(39)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37352842

RESUMEN

YbBO3is a member of the orthoborate family of materials which contains a triangular arrangement of Yb3+ions. Here we study the physical properties of YbBO3with neutron diffraction, inelastic neutron scattering, specific heat, and ac susceptibility measurements. The neutron diffraction measurements confirm that our samples of YbBO3crystallize in the monoclinic space groupC2/c(#15) which contains two crystallographically distinct Yb3+sites decorating a slightly distorted triangular lattice. Heat capacity and ac susceptibility measurements indicate a potential transition to magnetic order at 0.4 K. In agreement with these observations, neutron diffraction measurements at 0.044 K observe magnetic Bragg peaks which can be indexed by a propagation vector of (0 0 1). Although determining a unique spin configuration corresponding to the observed magnetic Bragg peaks is not possible, model refinements indicate that the ordered moments are likely in the range of 0.4-0.9 µBand, notably, require moments on both Yb sites. In addition to the magnetic Bragg peaks, diffuse scattering at lowQis observed indicating that the transition does not correspond to complete long range magnetic order. The two-site picture for YbBO3is further evidenced by the number of crystal field excitations observed by inelastic neutron scattering measurements. Together these results show that YbBO3is a two-site triangular lattice material with signatures of long-range order as well as shorter ranged spin correlations.

2.
Phys Rev Lett ; 129(23): 237202, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563188

RESUMEN

Competition among exchange interactions is able to induce novel spin correlations on a bipartite lattice without geometrical frustration. A prototype example is the spiral spin liquid, which is a correlated paramagnetic state characterized by subdimensional degenerate propagation vectors. Here, using spectral graph theory, we show that spiral spin liquids on a bipartite lattice can be approximated by a further-neighbor model on the corresponding line-graph lattice that is nonbipartite, thus broadening the space of candidate materials that may support the spiral spin liquid phases. As illustrations, we examine neutron scattering experiments performed on two spinel compounds, ZnCr_{2}Se_{4} and CuInCr_{4}Se_{8}, to demonstrate the feasibility of this new approach and expose its possible limitations in experimental realizations.

3.
Phys Rev Lett ; 129(13): 137202, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36206423

RESUMEN

The experimental realization of magnetic skyrmion crystals in centrosymmetric materials has been driven by theoretical understanding of how a delicate balance of anisotropy and frustration can stabilize topological spin structures in applied magnetic fields. Recently, the centrosymmetric material Gd_{2}PdSi_{3} was shown to host a field-induced skyrmion crystal, but the skyrmion stabilization mechanism remains unclear. Here, we employ neutron-scattering measurements on an isotopically enriched polycrystalline Gd_{2}PdSi_{3} sample to quantify the interactions that drive skyrmion formation. Our analysis reveals spatially extended interactions in triangular planes, and large ferromagnetic interplanar magnetic interactions that are modulated by the Pd/Si superstructure. The skyrmion crystal emerges from a zero-field helical magnetic order with magnetic moments perpendicular to the magnetic propagation vector, indicating that the magnetic dipolar interaction plays a significant role. Our experimental results establish an interaction space that can promote skyrmion formation, facilitating identification and design of centrosymmetric skyrmion materials.

4.
Phys Rev Lett ; 128(22): 227201, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714254

RESUMEN

Spiral spin liquids are correlated paramagnetic states with degenerate propagation vectors forming a continuous ring or surface in reciprocal space. On the honeycomb lattice, spiral spin liquids present a novel route to realize emergent fracton excitations, quantum spin liquids, and topological spin textures, yet experimental realizations remain elusive. Here, using neutron scattering, we show that a spiral spin liquid is realized in the van der Waals honeycomb magnet FeCl_{3}. A continuous ring of scattering is directly observed, which indicates the emergence of an approximate U(1) symmetry in momentum space. Our work demonstrates that spiral spin liquids can be achieved in two-dimensional systems and provides a promising platform to study the fracton physics in spiral spin liquids.

5.
Nat Commun ; 12(1): 5331, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504075

RESUMEN

An ongoing challenge in the study of quantum materials, is to reveal and explain collective quantum effects in spin systems where interactions between different modes types are important. Here we approach this problem through a combined experimental and theoretical study of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a continuous quantum phase transition. Our inelastic neutron scattering measurements of Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone center. To account for the many-body effects of the interacting low-energy modes in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode decay and renormalization is reproduced by including all one-loop corrections. The theoretical framework developed here is broadly applicable to quantum magnets with more than one type of low energy mode.

6.
Phys Rev Lett ; 125(16): 167201, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124855

RESUMEN

We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr_{4}S_{8}. We observe an unconventional magnetic excitation spectrum with a separation of high- and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parametrize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional-theory predictions [Ghosh et al., npj Quantum Mater. 4, 63 (2019)2397-464810.1038/s41535-019-0202-z]. We explain the origin of geometrical frustration in LiGaCr_{4}S_{8} in terms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered-cubic lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids.

7.
Science ; 359(6372): 186-191, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29326267

RESUMEN

In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. The agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.

8.
Sci Adv ; 2(9): e1501814, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27652338

RESUMEN

Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 - x)[Pb(Mg1/3Nb2/3)O3] - xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.


Asunto(s)
Imanes/química , Fenómenos Mecánicos , Nanoestructuras/química , Fonones , Impedancia Eléctrica , Electricidad , Microscopía de Fuerza Atómica , Difracción de Neutrones , Titanio/química , Vibración
9.
Adv Mater ; 27(29): 4330-5, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26076654

RESUMEN

In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation.


Asunto(s)
Compuestos de Bario/química , Niobio/química , Óxidos/química , Potasio/química , Titanio/química , Electricidad , Plomo/química , Nanoestructuras/química , Difracción de Neutrones , Transductores , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...