Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 129(2): 333-341, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541621

RESUMEN

Animal models have consistently indicated that central sensitization and the development of chronic neuropathic pain are linked to changes to inhibitory signaling in the dorsal horn of the spinal cord. However, replication of data investigating the cellular mechanisms that underlie these changes remains a challenge and there is still a lack of understanding about what aspects of spinal inhibitory transmission most strongly contribute to the disease. Here, we compared the effect of two different sciatic nerve injuries commonly used to generate rodent models of neuropathic pain on spinal glycinergic signaling. Using whole cell patch-clamp electrophysiology in spinal slices, we recorded from neurons in the lamina II of the dorsal horn and evoked inhibitory postsynaptic currents with a stimulator in lamina III, where glycinergic cell bodies are concentrated. We found that glycine inputs onto radial neurons were reduced following partial nerve ligation (PNL) of the sciatic nerve, consistent with a previous report. However, this finding was not replicated in animals that underwent chronic constriction injury (CCI) to the same nerve region. To limit the between-experiment variability, we kept the rat species, sex, and age consistent and had a single investigator carry out the surgeries. These data show that PNL and CCI cause divergent spinal signaling outcomes in the cord and add to the body of evidence suggesting that treatments for neuropathic pain should be triaged according to nerve injury or cellular dysfunction rather than the symptoms of the disease.NEW & NOTEWORTHY Neuropathic pain models are used in preclinical research to investigate the mechanisms underlying allodynia, a common symptom of neuropathic pain, and to test, develop, and validate therapies for persistent pain. We demonstrate that a glycinergic dysfunction is consistently associated with partial nerve ligation but not the chronic constriction injury model. This suggests that the cellular effects produced by each injury are distinct and that data from different neuropathic pain models should be considered separately.


Asunto(s)
Neuralgia , Sustancia Gelatinosa , Ratas , Animales , Ratas Sprague-Dawley , Constricción , Neuronas , Médula Espinal
2.
J Pharmacol Exp Ther ; 382(3): 246-255, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779948

RESUMEN

Aberrations in spinal glycinergic signaling are a feature of pain chronification. Normalizing these changes by inhibiting glycine transporter (GlyT)-2 is a promising treatment strategy. However, existing GlyT2 inhibitors (e.g., ORG25543) are limited by narrow therapeutic windows and severe dose-limiting side effects, such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterized in mouse models of acute (hot plate), inflammatory (complete Freund's adjuvant), and chronic neuropathic (chronic constriction injury) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod), and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete antiallodynia for chronic neuropathic pain, but no antiallodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. SIGNIFICANCE STATEMENT: Partially inhibiting glycine transporter (GlyT)-2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor ol-D-lys is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.


Asunto(s)
Dolor Agudo , Dolor Crónico , Neuralgia , Insuficiencia Respiratoria , Animales , Modelos Animales de Enfermedad , Proteínas de Transporte de Glicina en la Membrana Plasmática , Hiperalgesia/tratamiento farmacológico , Lípidos , Lisina/farmacología , Lisina/uso terapéutico , Masculino , Ratones , Neuralgia/tratamiento farmacológico , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico
3.
Front Pharmacol ; 13: 860903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694265

RESUMEN

Animal models of human pain conditions allow for detailed interrogation of known and hypothesized mechanisms of pain physiology in awake, behaving organisms. The importance of the glycinergic system for pain modulation is well known; however, manipulation of this system to treat and alleviate pain has not yet reached the sophistication required for the clinic. Here, we review the current literature on what animal behavioral studies have allowed us to elucidate about glycinergic pain modulation, and the progress toward clinical treatments so far. First, we outline the animal pain models that have been used, such as nerve injury models for neuropathic pain, chemogenic pain models for acute and inflammatory pain, and other models that mimic painful human pathologies such as diabetic neuropathy. We then discuss the genetic approaches to animal models that have identified the crucial glycinergic machinery involved in neuropathic and inflammatory pain. Specifically, two glycine receptor (GlyR) subtypes, GlyRα1(ß) and GlyRα3(ß), and the two glycine transporters (GlyT), GlyT1 and GlyT2. Finally, we review the different pharmacological approaches to manipulating the glycinergic system for pain management in animal models, such as partial vs. full agonism, reversibility, and multi-target approaches. We discuss the benefits and pitfalls of using animal models in drug development broadly, as well as the progress of glycinergic treatments from preclinical to clinical trials.

4.
Nature ; 597(7877): 571-576, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497422

RESUMEN

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Asunto(s)
Analgesia , Receptor de Adenosina A1/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hiperalgesia/tratamiento farmacológico , Lípidos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/química , Transducción de Señal/efectos de los fármacos
6.
Trends Pharmacol Sci ; 41(12): 947-959, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33097283

RESUMEN

G protein-biased agonists of the µ-opioid receptor (MOPr) have been proposed as an improved class of opioid analgesics. Recent studies have been unable to reproduce the original experiments in the ß-arrestin2-knockout mouse that led to this proposal, and alternative genetic models do not support the G protein-biased MOPr agonist hypothesis. Furthermore, assessment of putatively biased ligands has been confounded by several factors, including assay amplification. As such, the extent to which current lead compounds represent mechanistically novel, extremely G protein-biased agonists is in question, as is the underlying assumption that ß-arrestin2 mediates deleterious opioid effects. Addressing these current challenges represents a pressing issue to successfully advance drug development at this receptor and improve upon current opioid analgesics.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Animales , Proteínas de Unión al GTP/metabolismo , Ligandos , Ratones , Receptores Opioides mu/metabolismo , Arrestina beta 2/metabolismo
7.
Mol Pharmacol ; 98(4): 410-424, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32665252

RESUMEN

Evidence from several novel opioid agonists and knockout animals suggests that improved opioid therapeutic window, notably for analgesia versus respiratory depression, is a result of ligand bias downstream of activation of the µ-opioid receptor (MOR) toward G protein signaling and away from other pathways, such as arrestin recruitment. Here, we argue that published claims of opioid bias based on application of the operational model of agonism are frequently confounded by failure to consider the assumptions of the model. These include failure to account for intrinsic efficacy and ceiling effects in different pathways, distortions introduced by analysis of amplified (G protein) versus linear (arrestin) signaling mechanisms, and nonequilibrium effects in a dynamic signaling cascade. We show on both theoretical and experimental grounds that reduced intrinsic efficacy that is unbiased across different downstream pathways, when analyzed without due considerations, does produce apparent but erroneous MOR ligand bias toward G protein signaling, and the weaker the G protein partial agonism is the greater the apparent bias. Experimentally, such apparently G protein-biased opioids have been shown to exhibit low intrinsic efficacy for G protein signaling when ceiling effects are properly accounted for. Nevertheless, such agonists do display an improved therapeutic window for analgesia versus respiratory depression. Reduced intrinsic efficacy for G proteins rather than any supposed G protein bias provides a more plausible, sufficient explanation for the improved safety. Moreover, genetic models of G protein-biased opioid receptors and replication of previous knockout experiments suggest that reduced or abolished arrestin recruitment does not improve therapeutic window for MOR-induced analgesia versus respiratory depression. SIGNIFICANCE STATEMENT: Efforts to improve safety of µ-opioid analgesics have focused on agonists that show signaling bias for the G protein pathway versus other signaling pathways. This review provides theoretical and experimental evidence showing that failure to consider the assumptions of the operational model can lead to large distortions and overestimation of actual bias. We show that low intrinsic efficacy is a major determinant of these distortions, and pursuit of appropriately reduced intrinsic efficacy should guide development of safer opioids.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Animales , Humanos , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos
8.
Sci Signal ; 13(625)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234959

RESUMEN

Biased agonism at G protein-coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus ß-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as ß-arrestin recruitment. At the µ-opioid receptor (MOR), G protein-biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in ß-arrestin-mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and ß-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target.


Asunto(s)
Bencimidazoles , Piperidinas , Receptores Opioides mu/agonistas , Compuestos de Espiro , Tiofenos , Urea/análogos & derivados , Bencimidazoles/efectos adversos , Bencimidazoles/química , Bencimidazoles/farmacología , Células HEK293 , Humanos , Piperidinas/efectos adversos , Piperidinas/química , Piperidinas/farmacología , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Compuestos de Espiro/efectos adversos , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Tiofenos/efectos adversos , Tiofenos/química , Tiofenos/farmacología , Urea/efectos adversos , Urea/química , Urea/farmacología , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
9.
Br J Pharmacol ; 177(13): 2923-2931, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32052419

RESUMEN

BACKGROUND AND PURPOSE: GPCRs can signal through both G proteins and ß-arrestin2. For the µ-opioid receptor, early experimental evidence from a single study suggested that G protein signalling mediates analgesia, whereas ß-arrestin2 signalling mediates respiratory depression and constipation. Consequently, for more than a decade, much research effort has been focused on developing biased µ-opioid agonists that preferentially target G protein signalling over ß-arrestin signalling, as it was believed that such drugs would be analgesics devoid of respiratory depressant activity. However, the prototypical compounds that have been developed based on this concept have so far failed in clinical and preclinical development. EXPERIMENTAL APPROACH: The present study was set up to re-examine opioid-induced respiratory depression in ß-arrestin2 knockout mice. To this end, a consortium was formed consisting of three different laboratories located in different countries to evaluate independently opioid-induced respiratory depression. KEY RESULTS: Our consensus results unequivocally demonstrate that the prototypical µ-opioid agonist morphine (3.75-100 mg·kg-1 s.c. or 3-30 mg·kg-1 i.p.) as well as the potent opioid fentanyl (0.05-0.35 mg·kg-1 s.c.) do indeed induce respiratory depression and constipation in ß-arrestin2 knockout mice in a dose-dependent manner indistinguishable from that observed in wild-type mice. CONCLUSION AND IMPLICATIONS: Our findings do not support the original suggestion that ß-arrestin2 signalling plays a key role in opioid-induced respiratory depression and call into question the concept of developing G protein-biased µ-opioid receptor agonists as a strategy for the development of safer opioid analgesic drugs.


Asunto(s)
Morfina , Insuficiencia Respiratoria , Analgésicos Opioides/toxicidad , Animales , Fentanilo , Ratones , Morfina/farmacología , Receptores Opioides mu/metabolismo , Insuficiencia Respiratoria/inducido químicamente , Arrestina beta 2/metabolismo
10.
Front Pharmacol ; 11: 633679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584315

RESUMEN

Despite potently inhibiting the nociceptive voltage-gated sodium (Nav) channel, Nav1.7, µ-theraphotoxin Pn3a is antinociceptive only upon co-administration with sub-therapeutic opioid agonists, or by itself at doses >3,000-fold greater than its Nav1.7 IC 50 by a yet undefined mechanism. Nav channels are structurally related to voltage-gated calcium (Cav) channels, Cav1 and Cav2. These channels mediate the high voltage-activated (HVA) calcium currents (I Ca ) that orchestrate synaptic transmission in nociceptive dorsal root ganglion (DRG) neurons and are fine-tuned by opioid receptor (OR) activity. Using whole-cell patch clamp recording, we found that Pn3a (10 µM) inhibits ∼55% of rat DRG neuron HVA-I Ca and 60-80% of Cav1.2, Cav1.3, Cav2.1, and Cav2.2 mediated currents in HEK293 cells, with no inhibition of Cav2.3. As a major DRG I Ca component, Cav2.2 inhibition by Pn3a (IC 50 = 3.71 ± 0.21 µM) arises from an 18 mV hyperpolarizing shift in the voltage dependence of inactivation. We observed that co-application of Pn3a and µ-OR agonist DAMGO results in enhanced HVA-I Ca inhibition in DRG neurons whereas co-application of Pn3a with the OR antagonist naloxone does not, underscoring HVA channels as shared targets of Pn3a and opioids. We provide evidence that Pn3a inhibits native and recombinant HVA Cavs at previously reportedly antinociceptive concentrations in animal pain models. We show additive modulation of DRG HVA-I Ca by sequential application of low Pn3a doses and sub-therapeutic opioids ligands. We propose Pn3a's antinociceptive effects result, at least in part, from direct inhibition of HVA-I Ca at high Pn3a doses, or through additive inhibition by low Pn3a and mild OR activation.

11.
Proc Natl Acad Sci U S A ; 116(44): 22353-22358, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611414

RESUMEN

An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bilaids with an unusual alternating LDLD chirality. Given their resemblance to known short peptide opioid agonists, we elucidated that they were weak (Ki low micromolar) µ-opioid agonists, which led to the design of bilorphin, a potent and selective µ-opioid receptor (MOPr) agonist (Ki 1.1 nM). In sharp contrast to all-natural product opioid peptides that efficaciously recruit ß-arrestin, bilorphin is G protein biased, weakly phosphorylating the MOPr and marginally recruiting ß-arrestin, with no receptor internalization. Importantly, bilorphin exhibits a similar G protein bias to oliceridine, a small nonpeptide with improved overdose safety. Molecular dynamics simulations of bilorphin and the strongly arrestin-biased endomorphin-2 with the MOPr indicate distinct receptor interactions and receptor conformations that could underlie their large differences in bias. Whereas bilorphin is systemically inactive, a glycosylated analog, bilactorphin, is orally active with similar in vivo potency to morphine. Bilorphin is both a unique molecular tool that enhances understanding of MOPr biased signaling and a promising lead in the development of next generation analgesics.


Asunto(s)
Analgésicos Opioides/farmacología , Proteínas Fúngicas/farmacología , Oligopéptidos/farmacología , Penicillium/química , Receptores Opioides mu/agonistas , Analgésicos Opioides/química , Animales , Sitios de Unión , Línea Celular Tumoral , Proteínas Fúngicas/química , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Unión Proteica , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
12.
Handb Exp Pharmacol ; 254: 417, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152275

RESUMEN

In the last paragraph of Sect. 2.1.2 on line 3 the word 'off-cells' is misspelt. It should be 'on-cells'.

13.
Handb Exp Pharmacol ; 254: 91-130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838458

RESUMEN

Whilst the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) has similar intracellular coupling mechanisms to opioid receptors, it has distinct modulatory effects on physiological functions such as pain. These actions range from agonistic to antagonistic interactions with classical opioids within the spinal cord and brain, respectively. Understanding the electrophysiological actions of N/OFQ has been crucial in ascertaining the mechanisms by which these agonistic and antagonistic interactions occur. These similarities and differences between N/OFQ and opioids are due to the relative location of NOP versus opioid receptors on specific neuronal elements within these CNS regions. These mechanisms result in varied cellular actions including postsynaptic modulation of ion channels and presynaptic regulation of neurotransmitter release.


Asunto(s)
Analgésicos Opioides/farmacología , Péptidos Opioides , Receptores Opioides , Analgésicos Opioides/química , Humanos , Péptidos Opioides/farmacología , Dolor , Receptores Opioides/química
14.
J Med Chem ; 62(5): 2466-2484, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30714733

RESUMEN

Inhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors. The potent inhibitor oleoyl-d-lysine (33) is also resistant to degradation in both human and rat plasma and liver microsomes, and is rapidly absorbed following an intraperitoneal injection to rats and readily crosses the blood-brain barrier. We demonstrate that 33 provides greater analgesia at lower doses, and does not possess the severe side effects of the very slowly reversible GlyT2 inhibitor, ORG25543 (2).


Asunto(s)
Aminoácidos/uso terapéutico , Analgésicos/uso terapéutico , Dolor Crónico/prevención & control , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Aminoácidos/química , Aminoácidos/farmacocinética , Animales , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Semivida , Humanos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley
15.
Sci Rep ; 8(1): 13397, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194442

RESUMEN

Cone snails are a diverse group of predatory marine invertebrates that deploy remarkably complex venoms to rapidly paralyse worm, mollusc or fish prey. ω-Conotoxins are neurotoxic peptides from cone snail venoms that inhibit Cav2.2 voltage-gated calcium channel, demonstrating potential for pain management via intrathecal (IT) administration. Here, we isolated and characterized two novel ω-conotoxins, MoVIA and MoVIB from Conus moncuri, the first to be identified in vermivorous (worm-hunting) cone snails. MoVIA and MoVIB potently inhibited human Cav2.2 in fluorimetric assays and rat Cav2.2 in patch clamp studies, and both potently displaced radiolabeled ω-conotoxin GVIA (125I-GVIA) from human SH-SY5Y cells and fish brain membranes (IC50 2-9 pM). Intriguingly, an arginine at position 13 in MoVIA and MoVIB replaced the functionally critical tyrosine found in piscivorous ω-conotoxins. To investigate its role, we synthesized MoVIB-[R13Y] and MVIIA-[Y13R]. Interestingly, MVIIA-[Y13R] completely lost Cav2.2 activity and MoVIB-[R13Y] had reduced activity, indicating that Arg at position 13 was preferred in these vermivorous ω-conotoxins whereas tyrosine 13 is preferred in piscivorous ω-conotoxins. MoVIB reversed pain behavior in a rat neuropathic pain model, confirming that vermivorous cone snails are a new source of analgesic ω-conotoxins. Given vermivorous cone snails are ancestral to piscivorous species, our findings support the repurposing of defensive venom peptides in the evolution of piscivorous Conidae.


Asunto(s)
Analgésicos/química , Bloqueadores de los Canales de Calcio/química , Evolución Molecular , omega-Conotoxinas/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo N/metabolismo , Línea Celular Tumoral , Células Cultivadas , Ganglios Espinales/citología , Humanos , Neuralgia/tratamiento farmacológico , Neuronas Aferentes/efectos de los fármacos , Ratas , Ratas Wistar , Caracoles , omega-Conotoxinas/genética , omega-Conotoxinas/farmacología , omega-Conotoxinas/uso terapéutico
16.
Sci Signal ; 11(539)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018083

RESUMEN

G protein receptor kinases (GRKs) and ß-arrestins are key regulators of µ-opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser375 and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and ß-arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was ß-arrestin to a DAMGO-activated MOR. ß-Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the 370TREHPSTANT379 motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and ß-arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence.


Asunto(s)
Arrestinas/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Regulación de la Expresión Génica , Receptores Opioides mu/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Analgésicos Opioides/farmacología , Arrestinas/química , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación/efectos de los fármacos , Receptores Opioides mu/agonistas , Homología de Secuencia , Serina/genética , Serina/metabolismo , Transducción de Señal , Treonina/genética , Treonina/metabolismo
18.
Br J Pharmacol ; 175(12): 2337-2347, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29500820

RESUMEN

BACKGROUND AND PURPOSE: Inhibitory neurotransmission plays an important role in controlling excitability within nociceptive circuits of the spinal cord dorsal horn. Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Preclinical studies suggest that increasing inhibitory glycinergic signalling is a good therapeutic strategy for treating pain. One approach to increase synaptic glycine is to inhibit the activity of the glycine transporter 2 (GlyT2) on inhibitory nerve terminals. These transporters are involved in regulating glycine concentrations and recycling glycine into presynaptic terminals. Inhibiting activity of GlyT2 increases synaptic glycine, which decreases excitability in nociceptive circuits and provides analgesia in neuropathic and inflammatory pain models. EXPERIMENTAL APPROACH: We investigated the effects of reversible and irreversible GlyT2 inhibitors on inhibitory glycinergic and NMDA receptor-mediated excitatory neurotransmission in the rat dorsal horn. The effect of these drugs on synaptic signalling was determined using patch-clamp electrophysiology techniques to measure glycine- and NMDA-mediated postsynaptic currents in spinal cord slices in vitro. KEY RESULTS: We compared activity of four compounds that increase glycinergic tone with a corresponding increase in evoked glycinergic postsynaptic currents. These compounds did not deplete synaptic glycine release over time. Interestingly, none of these compounds increased glycine-mediated excitatory signalling through NMDA receptors. The results suggest that these compounds preferentially inhibit GlyT2 over G1yT1 with no potentiation of the glycine receptor and without inducing spillover from inhibitory to excitatory synapses. CONCLUSIONS AND IMPLICATIONS: GlyT2 inhibitors increase inhibitory neurotransmission in the dorsal horn and have potential as pain therapeutics. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Asunto(s)
Glicinérgicos/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Glicinérgicos/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Sinapsis/metabolismo
19.
Eur J Neurosci ; 47(10): 1159-1173, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29055101

RESUMEN

It has been recently demonstrated that predictive learning induces a persistent accumulation of delta-opioid receptors (DOPrs) at the somatic membrane of cholinergic interneurons (CINs) in the nucleus accumbens shell (Nac-S). This accumulation is required for predictive learning to influence subsequent choice between goal-directed actions. The current experiments investigated the local neurochemical events responsible for this translocation. We found that (1) local administration of substance P into multiple striatal sub-territories induced DOPr translocation and (2) that this effect was mediated by the NK1 receptor, likely through its expression on CINs. Interestingly, whereas intrastriatal infusion of the D1 agonist chloro-APB reduced the DOPr translocation on CINs and infusion of the D2 agonist quinpirole had no effect, co-administration of both agonists again generated DOPr translocation, suggesting the effect of the D1 agonist alone was due to receptor internalisation. In support of this, local administration of cocaine was found to increase DOPr translocation as was chloro-APB when co-administered with the DOPr antagonist naltrindole. These studies provide the first evidence of delta-opioid receptor translocation in striatal cholinergic interneurons outside of the accumbens shell and suggest that, despite differences in local striatal neurochemical microenvironments, a similar molecular mechanism - involving an interaction between dopamine and SP signalling via NK1R - regulates DOPr translocation in multiple striatal regions. To our knowledge, this represents a novel mechanism by which DOPr distribution is regulated that may be particularly relevant to learning-induced DOPr trafficking.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Agonistas de Dopamina/farmacología , Dopamina/metabolismo , Interneuronas/metabolismo , Neostriado/metabolismo , Neurotransmisores/farmacología , Núcleo Accumbens/metabolismo , Receptores de Neuroquinina-1/metabolismo , Receptores Opioides delta/metabolismo , Sustancia P/farmacología , Animales , Neuronas Colinérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neostriado/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Receptores de Neuroquinina-1/efectos de los fármacos , Receptores Opioides delta/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 114(46): 12309-12314, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087309

RESUMEN

G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund's adjuvant more effectively than unconjugated CGRP8-37 Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.


Asunto(s)
Proteína Similar al Receptor de Calcitonina/genética , Endocitosis/efectos de los fármacos , Endosomas/metabolismo , Nocicepción/fisiología , Dolor/fisiopatología , Transmisión Sináptica/efectos de los fármacos , Antagonistas Adrenérgicos/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/farmacología , Proteína Similar al Receptor de Calcitonina/antagonistas & inhibidores , Proteína Similar al Receptor de Calcitonina/metabolismo , Capsaicina/antagonistas & inhibidores , Capsaicina/farmacología , Colestanoles/farmacología , Clatrina/antagonistas & inhibidores , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endosomas/efectos de los fármacos , Formaldehído/antagonistas & inhibidores , Formaldehído/farmacología , Adyuvante de Freund/antagonistas & inhibidores , Adyuvante de Freund/farmacología , Regulación de la Expresión Génica , Inyecciones Espinales , Masculino , Ratones , Microtomía , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nocicepción/efectos de los fármacos , Dolor/inducido químicamente , Dolor/genética , Dolor/prevención & control , Fragmentos de Péptidos/farmacología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...